論文の概要: Robust joint registration of multiple stains and MRI for multimodal 3D
histology reconstruction: Application to the Allen human brain atlas
- arxiv url: http://arxiv.org/abs/2104.14873v2
- Date: Tue, 4 May 2021 13:39:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-05 10:46:42.821602
- Title: Robust joint registration of multiple stains and MRI for multimodal 3D
histology reconstruction: Application to the Allen human brain atlas
- Title(参考訳): マルチモーダル3次元組織再構成における複数染色とMRIのロバストな関節登録:アレンヒト脳アトラスへの応用
- Authors: Adri\`a Casamitjana, Marco Lorenzi, Sebastiano Ferraris, Loc Peter,
Marc Modat, Allison Stevens, Bruce Fischl, Tom Vercauteren, Juan Eugenio
Iglesias
- Abstract要約: 複数の組織染色を再現する空間的変形の確率論的モデルを提案する。
本手法は, アウトリーヤの存在下においても複数のコントラストを正確かつ堅牢に登録できることを示した。
また, 組織学とMRIにおいて最も多く用いられている2つのアトラスのギャップを埋めるMNI空間の対応も提供する。
- 参考スコア(独自算出の注目度): 5.303976649864034
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Joint registration of a stack of 2D histological sections to recover 3D
structure (3D histology reconstruction) finds application in areas such as
atlas building and validation of in vivo imaging. Straighforward pairwise
registration of neighbouring sections yields smooth reconstructions but has
well-known problems such as banana effect (straightening of curved structures)
and z-shift (drift). While these problems can be alleviated with an external,
linearly aligned reference (e.g., Magnetic Resonance images), registration is
often inaccurate due to contrast differences and the strong nonlinear
distortion of the tissue, including artefacts such as folds and tears. In this
paper, we present a probabilistic model of spatial deformation that yields
reconstructions for multiple histological stains that that are jointly smooth,
robust to outliers, and follow the reference shape. The model relies on a
spanning tree of latent transforms connecting all the sections and slices, and
assumes that the registration between any pair of images can be see as a noisy
version of the composition of (possibly inverted) latent transforms connecting
the two images. Bayesian inference is used to compute the most likely latent
transforms given a set of pairwise registrations between image pairs within and
across modalities. Results on synthetic deformations on multiple MR modalities,
show that our method can accurately and robustly register multiple contrasts
even in the presence of outliers. The 3D histology reconstruction of two stains
(Nissl and parvalbumin) from the Allen human brain atlas, show its benefits on
real data with severe distortions. We also provide the correspondence to MNI
space, bridging the gap between two of the most used atlases in histology and
MRI. Data is available at https://openneuro.org/datasets/ds003590 and code at
https://github.com/acasamitjana/3dhirest.
- Abstract(参考訳): 3D構造を復元するための2D組織学的区画の二重登録(3D組織学的再構成)は、アトラス構築や生体内イメージングの検証などの分野で応用される。
隣り合う部分の直線的登録はスムーズな再構築をもたらすが、バナナ効果(曲線構造の直線化)やzシフト(ドリフト)といったよく知られた問題がある。
これらの問題は、外部で線形に整列した基準(例えば、磁気共鳴画像)で緩和できるが、コントラスト差や、折りたたみや涙などの人工物を含む組織の強い非線形歪みにより、しばしば登録は不正確である。
そこで,本稿では,複数の組織学的染色の再現性を示す空間的変形の確率論的モデルを提案する。
このモデルは、すべてのセクションとスライスを繋ぐ潜性変換のスパンディングツリーに依存しており、任意の一対のイメージ間の登録は、2つのイメージを繋ぐ(おそらく反転)潜性変換の構成のノイズバージョンとして見ることができると仮定している。
ベイズ推論は、モダリティ内およびモダリティ間の画像ペア間のペア登録セットが与えられた最も可能性の高い潜在変換を計算するために用いられる。
また,複数のMRモードの合成変形の結果から,複数のコントラストを精度よく,かつ頑健に登録できることが示唆された。
アレンヒト脳房からの2つの染色(Nisslとparvalbumin)の3D組織学的再構成は、深刻な歪みを伴う実際のデータにその利点を示す。
また, 組織学とMRIにおいて最も多く用いられている2つのアトラスのギャップを埋めるMNI空間の対応も提供する。
データはhttps://openneuro.org/datasets/ds003590、コードはhttps://github.com/acasamitjana/3dhirest。
関連論文リスト
- A Plug-and-Play Method for Guided Multi-contrast MRI Reconstruction based on Content/Style Modeling [1.1622133377827824]
誘導再建のためのモジュラー2段階手法を提案する。
放射線学的な課題として、MUNITは診断品質における臨床再建よりも33.3%の加速を可能にした。
論文 参考訳(メタデータ) (2024-09-20T13:08:51Z) - Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
クロスモーダル逆ニューラルレンダリングによる神経外科手術における術中3D/2Dレジストレーションのための新しいアプローチを提案する。
本手法では,暗黙の神経表現を2つの構成要素に分離し,術前および術中における解剖学的構造について検討した。
臨床症例の振り返りデータを用いて本法の有効性を検証し,現在の登録基準を満たした状態での最先端の検査成績を示した。
論文 参考訳(メタデータ) (2024-09-18T13:40:59Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - On the Localization of Ultrasound Image Slices within Point Distribution
Models [84.27083443424408]
甲状腺疾患は高分解能超音波(US)で診断されることが多い
縦断追跡は病理甲状腺形態の変化をモニタリングするための重要な診断プロトコルである。
3次元形状表現におけるUS画像の自動スライスローカライズのためのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-01T10:10:46Z) - Two-and-a-half Order Score-based Model for Solving 3D Ill-posed Inverse
Problems [7.074380879971194]
本稿では,3次元ボリューム再構成のための2次半順序スコアベースモデル(TOSM)を提案する。
トレーニング期間中、TOSMは2次元空間のデータ分布を学習し、トレーニングの複雑さを低減する。
再構成フェーズでは、TOSMは3方向の相補的なスコアを利用して、3次元空間のデータ分布を更新する。
論文 参考訳(メタデータ) (2023-08-16T17:07:40Z) - Improved Cryo-EM Pose Estimation and 3D Classification through Latent-Space Disentanglement [14.973360669658561]
本稿では,自己教師付き変分オートエンコーダアーキテクチャであるHetACUMNを提案する。
シミュレーションデータセットの結果,HetACUMNは,他のアモータイズ法や非アモータイズ法よりも正確なコンフォメーション分類が得られた。
論文 参考訳(メタデータ) (2023-08-09T13:41:30Z) - Single-subject Multi-contrast MRI Super-resolution via Implicit Neural
Representations [9.683341998041634]
Inlicit Neural Representations (INR) は連続空間関数における相補的視点の2つの異なるコントラストを学習することを提案した。
我々のモデルは、3つのデータセットを用いた実験において、異なるコントラストのペア間で現実的な超解像を提供する。
論文 参考訳(メタデータ) (2023-03-27T10:18:42Z) - Pathology Synthesis of 3D-Consistent Cardiac MR Images using 2D VAEs and
GANs [0.5039813366558306]
本稿では,教師付きディープラーニング(DL)トレーニングの適用のためのラベル付きデータを生成する手法を提案する。
画像合成はラベル変形とラベルから画像への変換からなる。
心臓MRI画像のデータベースを多様化・拡張する手法として,このようなアプローチが有効であることを示す。
論文 参考訳(メタデータ) (2022-09-09T10:17:49Z) - 3D Reconstruction of Curvilinear Structures with Stereo Matching
DeepConvolutional Neural Networks [52.710012864395246]
本稿では,立体対における曲線構造の検出とマッチングのための完全自動パイプラインを提案する。
主に、TEM画像のステレオ対から転位を3次元再構成することに焦点を当てる。
論文 参考訳(メタデータ) (2021-10-14T23:05:47Z) - Multi-Modal MRI Reconstruction with Spatial Alignment Network [51.74078260367654]
臨床実践では、複数のコントラストを持つMRIが1つの研究で取得されるのが普通である。
近年の研究では、異なるコントラストやモダリティの冗長性を考慮すると、k空間にアンダーサンプリングされたMRIの目標モダリティは、完全にサンプリングされたシーケンスの助けを借りてよりよく再構成できることが示されている。
本稿では,空間アライメントネットワークと再構成を統合し,再構成対象のモダリティの質を向上させる。
論文 参考訳(メタデータ) (2021-08-12T08:46:35Z) - MotioNet: 3D Human Motion Reconstruction from Monocular Video with
Skeleton Consistency [72.82534577726334]
モノクロビデオから3次元人間の骨格の動きを直接再構成するディープニューラルネットワークであるMotioNetを紹介した。
本手法は,動作表現を完全かつ一般的に使用するキネマティックスケルトンを直接出力する最初のデータ駆動型手法である。
論文 参考訳(メタデータ) (2020-06-22T08:50:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。