Ensemble Kalman filter in latent space using a variational autoencoder pair
- URL: http://arxiv.org/abs/2502.12987v1
- Date: Tue, 18 Feb 2025 16:11:05 GMT
- Title: Ensemble Kalman filter in latent space using a variational autoencoder pair
- Authors: Ivo Pasmans, Yumeng Chen, Tobias Sebastian Finn, Marc Bocquet, Alberto Carrassi,
- Abstract summary: variational autoencoder (VAE) is a machine learning (ML) technique that allows to map an arbitrary distribution to/from a latent space.
We propose a novel hybrid DA-ML approach in which VAEs are incorporated in the DA procedure.
- Score: 0.2383122657918106
- License:
- Abstract: Popular (ensemble) Kalman filter data assimilation (DA) approaches assume that the errors in both the a priori estimate of the state and those in the observations are Gaussian. For constrained variables, e.g. sea ice concentration or stress, such an assumption does not hold. The variational autoencoder (VAE) is a machine learning (ML) technique that allows to map an arbitrary distribution to/from a latent space in which the distribution is supposedly closer to a Gaussian. We propose a novel hybrid DA-ML approach in which VAEs are incorporated in the DA procedure. Specifically, we introduce a variant of the popular ensemble transform Kalman filter (ETKF) in which the analysis is applied in the latent space of a single VAE or a pair of VAEs. In twin experiments with a simple circular model, whereby the circle represents an underlying submanifold to be respected, we find that the use of a VAE ensures that a posteri ensemble members lie close to the manifold containing the truth. Furthermore, online updating of the VAE is necessary and achievable when this manifold varies in time, i.e. when it is non-stationary. We demonstrate that introducing an additional second latent space for the observational innovations improves robustness against detrimental effects of non-Gaussianity and bias in the observational errors but it slightly lessens the performance if observational errors are strictly Gaussian.
Related papers
- Rectified Diffusion Guidance for Conditional Generation [62.00207951161297]
We revisit the theory behind CFG and rigorously confirm that the improper configuration of the combination coefficients (i.e., the widely used summing-to-one version) brings about expectation shift of the generative distribution.
We propose ReCFG with a relaxation on the guidance coefficients such that denoising with ReCFG strictly aligns with the diffusion theory.
That way the rectified coefficients can be readily pre-computed via traversing the observed data, leaving the sampling speed barely affected.
arXiv Detail & Related papers (2024-10-24T13:41:32Z) - GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [60.78684630040313]
Diffusion models tend to reconstruct normal counterparts of test images with certain noises added.
From the global perspective, the difficulty of reconstructing images with different anomalies is uneven.
We propose a global and local adaptive diffusion model (abbreviated to GLAD) for unsupervised anomaly detection.
arXiv Detail & Related papers (2024-06-11T17:27:23Z) - Theoretical Guarantees for Variational Inference with Fixed-Variance Mixture of Gaussians [27.20127082606962]
Variational inference (VI) is a popular approach in Bayesian inference.
This work aims to contribute to the theoretical study of VI in the non-Gaussian case.
arXiv Detail & Related papers (2024-06-06T12:38:59Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - TIC-TAC: A Framework for Improved Covariance Estimation in Deep Heteroscedastic Regression [109.69084997173196]
Deepscedastic regression involves jointly optimizing the mean and covariance of the predicted distribution using the negative log-likelihood.
Recent works show that this may result in sub-optimal convergence due to the challenges associated with covariance estimation.
We study two questions: (1) Does the predicted covariance truly capture the randomness of the predicted mean?
Our results show that not only does TIC accurately learn the covariance, it additionally facilitates an improved convergence of the negative log-likelihood.
arXiv Detail & Related papers (2023-10-29T09:54:03Z) - An adaptive ensemble filter for heavy-tailed distributions: tuning-free
inflation and localization [0.3749861135832072]
Heavy tails is a common feature of filtering distributions that results from the nonlinear dynamical and observation processes.
We propose an algorithm to estimate the prior-to-posterior update from samples of joint forecast distribution of the states and observations.
We demonstrate the benefits of this new ensemble filter on challenging filtering problems.
arXiv Detail & Related papers (2023-10-12T21:56:14Z) - Hyperbolic VAE via Latent Gaussian Distributions [7.258394470200572]
We propose a Gaussian manifold variational auto-encoder (GM-VAE) whose latent space consists of a set of Gaussian distributions.
In experiments, we demonstrate the efficacy of GM-VAE on two different tasks: density estimation of image datasets and environment modeling in model-based reinforcement learning.
arXiv Detail & Related papers (2022-09-30T04:09:06Z) - Variational Kalman Filtering with Hinf-Based Correction for Robust
Bayesian Learning in High Dimensions [2.294014185517203]
We address the problem of convergence of sequential variational inference filter (VIF) through the application of a robust variational objective and Hinf-norm based correction.
A novel VIF- Hinf recursion that employs consecutive variational inference and Hinf based optimization steps is proposed.
arXiv Detail & Related papers (2022-04-27T17:38:13Z) - Equivariance Discovery by Learned Parameter-Sharing [153.41877129746223]
We study how to discover interpretable equivariances from data.
Specifically, we formulate this discovery process as an optimization problem over a model's parameter-sharing schemes.
Also, we theoretically analyze the method for Gaussian data and provide a bound on the mean squared gap between the studied discovery scheme and the oracle scheme.
arXiv Detail & Related papers (2022-04-07T17:59:19Z) - Orthogonal Jacobian Regularization for Unsupervised Disentanglement in
Image Generation [64.92152574895111]
We propose a simple Orthogonal Jacobian Regularization (OroJaR) to encourage deep generative model to learn disentangled representations.
Our method is effective in disentangled and controllable image generation, and performs favorably against the state-of-the-art methods.
arXiv Detail & Related papers (2021-08-17T15:01:46Z) - Sparse Gaussian Processes with Spherical Harmonic Features [14.72311048788194]
We introduce a new class of inter-domain variational Gaussian processes (GP)
Our inference scheme is comparable to variational Fourier features, but it does not suffer from the curse of dimensionality.
Our experiments show that our model is able to fit a regression model for a dataset with 6 million entries two orders of magnitude faster.
arXiv Detail & Related papers (2020-06-30T10:19:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.