HOMIE: Humanoid Loco-Manipulation with Isomorphic Exoskeleton Cockpit
- URL: http://arxiv.org/abs/2502.13013v1
- Date: Tue, 18 Feb 2025 16:33:38 GMT
- Title: HOMIE: Humanoid Loco-Manipulation with Isomorphic Exoskeleton Cockpit
- Authors: Qingwei Ben, Feiyu Jia, Jia Zeng, Junting Dong, Dahua Lin, Jiangmiao Pang,
- Abstract summary: Current humanoid teleoperation systems either lack reliable low-level control policies, or struggle to acquire accurate whole-body control commands.
We propose a novel humanoid teleoperation cockpit integrates a humanoid loco-manipulation policy and a low-cost exoskeleton-based hardware system.
- Score: 52.12750762494588
- License:
- Abstract: Current humanoid teleoperation systems either lack reliable low-level control policies, or struggle to acquire accurate whole-body control commands, making it difficult to teleoperate humanoids for loco-manipulation tasks. To solve these issues, we propose HOMIE, a novel humanoid teleoperation cockpit integrates a humanoid loco-manipulation policy and a low-cost exoskeleton-based hardware system. The policy enables humanoid robots to walk and squat to specific heights while accommodating arbitrary upper-body poses. This is achieved through our novel reinforcement learning-based training framework that incorporates upper-body pose curriculum, height-tracking reward, and symmetry utilization, without relying on any motion priors. Complementing the policy, the hardware system integrates isomorphic exoskeleton arms, a pair of motion-sensing gloves, and a pedal, allowing a single operator to achieve full control of the humanoid robot. Our experiments show our cockpit facilitates more stable, rapid, and precise humanoid loco-manipulation teleoperation, accelerating task completion and eliminating retargeting errors compared to inverse kinematics-based methods. We also validate the effectiveness of the data collected by our cockpit for imitation learning. Our project is fully open-sourced, demos and code can be found in https://homietele.github.io/.
Related papers
- A Unified and General Humanoid Whole-Body Controller for Fine-Grained Locomotion [30.418274871034775]
We propose HugWBC: a unified and general humanoid whole-body controller for fine-grained locomotion.
HuGWBC enables real-world humanoid robots to produce various natural gaits, including walking (running), jumping, standing, and hopping, with customizable parameters.
HuGWBC also supports real-time interventions from external upper-body controllers like teleoperation, enabling loco-manipulation.
arXiv Detail & Related papers (2025-02-05T14:26:01Z) - Generalizable Humanoid Manipulation with 3D Diffusion Policies [41.23383596258797]
We build a real-world robotic system to address the problem of autonomous manipulation by humanoid robots.
Our system is mainly an integration of 1) a whole-upper-body robotic teleoperation system to acquire human-like robot data, and 2) a 25-DoF humanoid robot platform with a height-adjustable cart and a 3D LiDAR sensor.
We show that using only data collected in one scene and with only onboard computing, a full-sized humanoid robot can autonomously perform skills in diverse real-world scenarios.
arXiv Detail & Related papers (2024-10-14T17:59:00Z) - Learning Multi-Modal Whole-Body Control for Real-World Humanoid Robots [13.229028132036321]
Masked Humanoid Controller (MHC) supports standing, walking, and mimicry of whole and partial-body motions.
MHC imitates partially masked motions from a library of behaviors spanning standing, walking, optimized reference trajectories, re-targeted video clips, and human motion capture data.
We demonstrate sim-to-real transfer on the real-world Digit V3 humanoid robot.
arXiv Detail & Related papers (2024-07-30T09:10:24Z) - HumanPlus: Humanoid Shadowing and Imitation from Humans [82.47551890765202]
We introduce a full-stack system for humanoids to learn motion and autonomous skills from human data.
We first train a low-level policy in simulation via reinforcement learning using existing 40-hour human motion datasets.
We then perform supervised behavior cloning to train skill policies using egocentric vision, allowing humanoids to complete different tasks autonomously.
arXiv Detail & Related papers (2024-06-15T00:41:34Z) - HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
We present a high-dimensional, simulated robot learning benchmark, HumanoidBench, featuring a humanoid robot equipped with dexterous hands.
Our findings reveal that state-of-the-art reinforcement learning algorithms struggle with most tasks, whereas a hierarchical learning approach achieves superior performance when supported by robust low-level policies.
arXiv Detail & Related papers (2024-03-15T17:45:44Z) - Expressive Whole-Body Control for Humanoid Robots [20.132927075816742]
We learn a whole-body control policy on a human-sized robot to mimic human motions as realistic as possible.
With training in simulation and Sim2Real transfer, our policy can control a humanoid robot to walk in different styles, shake hands with humans, and even dance with a human in the real world.
arXiv Detail & Related papers (2024-02-26T18:09:24Z) - Giving Robots a Hand: Learning Generalizable Manipulation with
Eye-in-Hand Human Video Demonstrations [66.47064743686953]
Eye-in-hand cameras have shown promise in enabling greater sample efficiency and generalization in vision-based robotic manipulation.
Videos of humans performing tasks, on the other hand, are much cheaper to collect since they eliminate the need for expertise in robotic teleoperation.
In this work, we augment narrow robotic imitation datasets with broad unlabeled human video demonstrations to greatly enhance the generalization of eye-in-hand visuomotor policies.
arXiv Detail & Related papers (2023-07-12T07:04:53Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
We show that manipulation skills can be transferred from a human to a robot through the use of micro-evolutionary reinforcement learning.
We propose an algorithm for multi-dimensional evolution path searching that allows joint optimization of both the robot evolution path and the policy.
arXiv Detail & Related papers (2022-12-08T15:56:13Z) - Model Predictive Control for Fluid Human-to-Robot Handovers [50.72520769938633]
Planning motions that take human comfort into account is not a part of the human-robot handover process.
We propose to generate smooth motions via an efficient model-predictive control framework.
We conduct human-to-robot handover experiments on a diverse set of objects with several users.
arXiv Detail & Related papers (2022-03-31T23:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.