論文の概要: A Survey of Fuzzing Open-Source Operating Systems
- arxiv url: http://arxiv.org/abs/2502.13163v2
- Date: Thu, 20 Feb 2025 09:52:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:29:14.317353
- Title: A Survey of Fuzzing Open-Source Operating Systems
- Title(参考訳): ファジィ・オープンソース・オペレーティング・システムに関する調査
- Authors: Kun Hu, Qicai Chen, Zilong Lu, Wenzhuo Zhang, Bihuan Chen, You Lu, Haowen Jiang, Bingkun Sun, Xin Peng, Wenyun Zhao,
- Abstract要約: オープンソースのオペレーティングシステムの脆弱性は、重大なセキュリティリスクを引き起こす。
ファジィング(OSF)は、OSの複雑さと多層インタラクションによって、独特な課題に直面している。
この研究は、最先端のOSF技術について体系的に調査する。
- 参考スコア(独自算出の注目度): 11.770015366564774
- License:
- Abstract: Vulnerabilities in open-source operating systems (OSs) pose substantial security risks to software systems, making their detection crucial. While fuzzing has been an effective vulnerability detection technique in various domains, OS fuzzing (OSF) faces unique challenges due to OS complexity and multi-layered interaction, and has not been comprehensively reviewed. Therefore, this work systematically surveys the state-of-the-art OSF techniques, categorizes them based on the general fuzzing process, and investigates challenges specific to kernel, file system, driver, and hypervisor fuzzing. Finally, future research directions for OSF are discussed. GitHub: https://github.com/pghk13/Survey-OSF.
- Abstract(参考訳): オープンソースのオペレーティングシステム(OS)の脆弱性は、ソフトウェアシステムに重大なセキュリティリスクをもたらし、その検出を極めて重要なものにしている。
ファジィングは、様々なドメインにおいて効果的な脆弱性検出技術であるが、OSファジィング(OSF)は、OSの複雑さと多層的相互作用のために固有の課題に直面しており、包括的なレビューは行われていない。
そこで本研究では,最新のOSF技術を体系的に調査し,一般的なファジィングプロセスに基づいて分類し,カーネル,ファイルシステム,ドライバ,ハイパーバイザファジィングに特有の課題について検討する。
最後に,OSFの今後の研究方針について述べる。
GitHub: https://github.com/pghk13/Survey-OSF
関連論文リスト
- Demystifying OS Kernel Fuzzing with a Novel Taxonomy [42.56259589772939]
本研究はOSカーネルファジィングに関する最初の体系的研究である。
2017年から2024年にかけて、トップレベルの会場から99の学術研究の進捗状況をまとめることから始まる。
本稿では,カーネルファジングに特有の9つのコア機能に着目した,ステージベースファジングモデルとファジング分類法を提案する。
論文 参考訳(メタデータ) (2025-01-27T16:03:14Z) - Joint Attention-Guided Feature Fusion Network for Saliency Detection of
Surface Defects [69.39099029406248]
本稿では,エンコーダ・デコーダネットワークに基づく表面欠陥検出のための共同注意誘導型特徴融合ネットワーク(JAFFNet)を提案する。
JAFFNetは、主にJAFFモジュールをデコードステージに組み込んで、低レベルと高レベルの機能を適応的に融合させる。
SD- Saliency-900, Magnetic tile, and DAGM 2007 で行った実験から,本手法が他の最先端手法と比較して有望な性能を達成できたことが示唆された。
論文 参考訳(メタデータ) (2024-02-05T08:10:16Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Radio Frequency Fingerprinting via Deep Learning: Challenges and Opportunities [4.800138615859937]
RFF(Radio Frequency Fingerprinting)技術は、製造時に導入された固有のハードウェア不完全性に基づいて、物理層における無線デバイスを認証することを約束する。
機械学習の最近の進歩、特にディープラーニング(DL)では、デバイス固有の指紋を構成する複雑な特徴を抽出し学習するRFFシステムの能力が改善されている。
本稿では,DL ベースの RFF システム構築において直面する重要事項と課題を体系的に同定し,分析する。
論文 参考訳(メタデータ) (2023-10-25T06:45:49Z) - RLTrace: Synthesizing High-Quality System Call Traces for OS Fuzz Testing [10.644829779197341]
ファズOSカーネルのシードとして多種多様なシステムコールトレースを合成するために,RLTraceと呼ばれる深層強化学習ベースのソリューションを提案する。
モデルトレーニング中、ディープラーニングモデルはOSカーネルと相互作用し、最適なシステムコールトレースを推論する。
RLTraceは,より包括的なシステムコールトレースを生成することにより,他のシードジェネレータよりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-04T06:46:00Z) - Development of a Multi-purpose Fuzzer to Perform Assessment as Input to
a Cybersecurity Risk Assessment and Analysis System [0.0]
本稿では,提案技術の性能について述べる。
また、このファザがサイバーセキュリティのリスク評価と分析システムの一部としてどのように機能するかについても詳述している。
論文 参考訳(メタデータ) (2023-06-07T09:38:31Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
異常検出は様々なアプリケーションにおいて基本的な役割を果たす。
既存のメソッドでは、インスタンスがデータとして容易に観察できないシステムであるシナリオを扱うのが難しい。
システム埋め込みを学習するエンコーダデコーダモジュールを含むエンドツーエンドアプローチを開発する。
論文 参考訳(メタデータ) (2023-04-21T02:20:24Z) - Fingerprint recognition with embedded presentation attacks detection:
are we ready? [6.0168714922994075]
セキュリティアプリケーションのための指紋認証システムの拡散は,ソフトウェアベースのプレゼンテーション攻撃アルゴリズム(PAD)をそのようなシステムに組み込むことを急ぐ。
現在の研究では、指紋認証システムに組み込む際の有効性についてはあまり言及されていない。
本稿では,PADと検証段階を逐次実施する場合の2つの個別システムの受信者動作特性(ROC)の関係を確率論的にモデル化した性能シミュレータを提案する。
論文 参考訳(メタデータ) (2021-10-20T13:53:16Z) - NAS-FAS: Static-Dynamic Central Difference Network Search for Face
Anti-Spoofing [94.89405915373857]
対面防止(FAS)は、顔認識システムを保護する上で重要な役割を担っている。
既存の手法は専門家が設計したネットワークに依存しており、タスクFASのサブ最適化ソリューションにつながる可能性がある。
本稿では,ニューラルサーチ(NAS)に基づく最初のFAS手法であるFAS-FASを提案する。
論文 参考訳(メタデータ) (2020-11-03T23:34:40Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。