論文の概要: Mitigating Barren Plateaus in Quantum Neural Networks via an AI-Driven Submartingale-Based Framework
- arxiv url: http://arxiv.org/abs/2502.13166v2
- Date: Mon, 29 Sep 2025 05:36:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 17:47:08.828119
- Title: Mitigating Barren Plateaus in Quantum Neural Networks via an AI-Driven Submartingale-Based Framework
- Title(参考訳): AI-Driven Submartingale-based Frameworkによる量子ニューラルネットワークにおけるバレンプラトーの緩和
- Authors: Jun Zhuang, Chaowen Guan,
- Abstract要約: 量子ニューラルネットワーク(QNN)におけるバレンプラトー(BP)の緩和を目的としたAdaInitを提案する。
AdaInitは、非無視的な勾配分散をもたらすQNNの初期パラメータを反復的に合成し、BPを緩和する。
AdaInit が様々な QNN スケールで高い勾配分散を維持するために既存の手法を一貫して上回っていることを実証的に検証する。
- 参考スコア(独自算出の注目度): 3.0617189749929348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the era of noisy intermediate-scale quantum (NISQ) computing, Quantum Neural Networks (QNNs) have emerged as a promising approach for various applications, yet their training is often hindered by barren plateaus (BPs), where gradient variance vanishes exponentially in terms of the qubit size. Most existing initialization-based mitigation strategies rely heavily on pre-designed static parameter distributions, thereby lacking adaptability to diverse model sizes or data conditions. To address these limitations, we propose AdaInit, a foundational framework that leverages generative models with the submartingale property to iteratively synthesize initial parameters for QNNs that yield non-negligible gradient variance, thereby mitigating BPs. Unlike conventional one-shot initialization methods, AdaInit adaptively explores the parameter space by incorporating dataset characteristics and gradient feedback, with theoretical guarantees of convergence to finding a set of effective initial parameters for QNNs. We provide rigorous theoretical analyses of the submartingale-based process and empirically validate that AdaInit consistently outperforms existing initialization methods in maintaining higher gradient variance across various QNN scales. We believe this work may initiate a new avenue to mitigate BPs.
- Abstract(参考訳): ノイズの多い中間スケール量子 (NISQ) コンピューティングの時代、量子ニューラルネットワーク (QNN) は様々な用途において有望なアプローチとして現れてきたが、そのトレーニングはバレンプラトー (BP) によって妨げられ、そこでは勾配の分散はキュービットサイズで指数関数的に消滅する。
既存の初期化に基づく緩和戦略は、設計済みの静的パラメータ分布に大きく依存しているため、様々なモデルサイズやデータ条件への適応性に欠ける。
これらの制約に対処するため、AdaInitを提案する。AdaInitは、生成モデルとサブマッティングル特性を利用して、非無視的な勾配分散をもたらすQNNの初期パラメータを反復的に合成し、BPを緩和する基盤フレームワークである。
従来のワンショット初期化法とは異なり、AdaInitはデータセット特性と勾配フィードバックを取り入れてパラメータ空間を適応的に探索する。
AdaInit が様々な QNN スケールで高い勾配分散を維持するために既存の初期化法を一貫して上回っていることを実証的に検証する。
この作業はBPを緩和するための新たな道を開くかもしれないと私たちは信じている。
関連論文リスト
- Partially-Supervised Neural Network Model For Quadratic Multiparametric Programming [2.765106384328772]
本研究では,大域的解関数の数学的構造を直接表現する部分教師付きNNアーキテクチャを提案する。
汎用的なNNトレーニング手法とは対照的に,PSNN法は最適化問題の数学的性質から直接モデル重みを導出する。
論文 参考訳(メタデータ) (2025-06-05T20:26:18Z) - Q-MAML: Quantum Model-Agnostic Meta-Learning for Variational Quantum Algorithms [4.525216077859531]
モデル非依存メタラーニング(MAML)技術にインスパイアされた古典的手法を用いて,パラメータ化量子回路(PQC)を最適化するための新しいフレームワークを提案する。
我々のフレームワークはLearnerと呼ばれる古典的なニューラルネットワークを備えており、Learnerの出力を初期パラメータとしてPQCと相互作用する。
適応フェーズでは、学習者は変わらないまま、より正確な値に収束するために、いくつかのPQC更新しか必要としない。
論文 参考訳(メタデータ) (2025-01-10T12:07:00Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
ディープニューラルネットワーク(DNN)モデルは、プログラミング目的に使用される。
本稿では,凸型神経回復モデルについて検討する。
定常的非次元目的物はすべて,グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
また, 静止非次元目的物はすべて, グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
論文 参考訳(メタデータ) (2023-12-19T23:04:56Z) - Pointer Networks with Q-Learning for Combinatorial Optimization [55.2480439325792]
我々は、モデルフリーQ値ポリシー近似をPointer Networks(Ptr-Nets)と統合したハイブリッドニューラルネットワークであるPointer Q-Network(PQN)を紹介する。
実験により,本手法の有効性を実証し,不安定な環境でモデルをテストする。
論文 参考訳(メタデータ) (2023-11-05T12:03:58Z) - Challenges of variational quantum optimization with measurement shot noise [0.0]
問題の大きさが大きくなるにつれて、量子資源のスケーリングが一定の成功確率に達するか検討する。
この結果から,ハイブリッド量子古典アルゴリズムは古典外ループの破壊力を回避する必要がある可能性が示唆された。
論文 参考訳(メタデータ) (2023-07-31T18:01:15Z) - AskewSGD : An Annealed interval-constrained Optimisation method to train
Quantized Neural Networks [12.229154524476405]
我々は、深層ニューラルネットワーク(DNN)を量子化重みでトレーニングするための新しいアルゴリズム、Annealed Skewed SGD - AskewSGDを開発した。
アクティブなセットと実行可能な方向を持つアルゴリズムとは異なり、AskewSGDは実行可能な全セットの下でのプロジェクションや最適化を避けている。
実験結果から,AskewSGDアルゴリズムは古典的ベンチマークの手法と同等以上の性能を示した。
論文 参考訳(メタデータ) (2022-11-07T18:13:44Z) - LAWS: Look Around and Warm-Start Natural Gradient Descent for Quantum
Neural Networks [11.844238544360149]
Vari Quantum Algorithm (VQA) は、ノイズ中間スケール量子コンピュータ (NISQ) における有望な性能のために最近注目されている。
パラメータ化量子回路(PQC)上でランダムなパラメータを持つVQAは、勾配が量子ビット数で指数関数的に消えるバレンプラトー(BP)によって特徴づけられる。
本稿では、古典的な1次最適化点から、VQAでよく使われるアルゴリズムの1つである量子自然勾配(QNG)について述べる。
そして、私たちはアンダーラインAroundアンダーラインを提案しました。
論文 参考訳(メタデータ) (2022-05-05T14:16:40Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
メタラーニング(MTL)アプローチを用いて訓練されたDNNベースのOPF予測器を提案する。
開発したOPF予測器はベンチマークIEEEバスシステムを用いてシミュレーションにより検証される。
論文 参考訳(メタデータ) (2020-12-21T17:39:51Z) - Filter Pre-Pruning for Improved Fine-tuning of Quantized Deep Neural
Networks [0.0]
本稿では,DNNの微調整を妨害するフィルタを除去するPruning for Quantization (PfQ)と呼ばれる新しいプルーニング手法を提案する。
良く知られたモデルとデータセットを用いた実験により,提案手法が類似したモデルサイズで高い性能を実現することを確認した。
論文 参考訳(メタデータ) (2020-11-13T04:12:54Z) - Revisiting Initialization of Neural Networks [72.24615341588846]
ヘッセン行列のノルムを近似し, 制御することにより, 層間における重みのグローバルな曲率を厳密に推定する。
Word2Vec と MNIST/CIFAR 画像分類タスクの実験により,Hessian ノルムの追跡が診断ツールとして有用であることが確認された。
論文 参考訳(メタデータ) (2020-04-20T18:12:56Z) - Optimistic Exploration even with a Pessimistic Initialisation [57.41327865257504]
最適初期化は強化学習(RL)における効率的な探索のための効果的な戦略である
特に、正の報酬しか持たないシナリオでは、Q-値はその最低値で初期化される。
本稿では、ニューラルネットワークから楽観性の源を分離する、悲観的に初期化されたQ値に対する単純なカウントベースの拡張を提案する。
論文 参考訳(メタデータ) (2020-02-26T17:15:53Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
ディープニューラルネットワークは、さまざまな分類と推論タスクに対して最先端のパフォーマンスを達成する。
グラデーションと非進化性の組み合わせは、学習を新しい問題の影響を受けやすいものにする。
確率変数を用いて学習した深層ネットワークの近傍層を融合する手法を提案する。
論文 参考訳(メタデータ) (2020-01-28T18:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。