論文の概要: Partially-Supervised Neural Network Model For Quadratic Multiparametric Programming
- arxiv url: http://arxiv.org/abs/2506.05567v1
- Date: Thu, 05 Jun 2025 20:26:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 17:28:43.223817
- Title: Partially-Supervised Neural Network Model For Quadratic Multiparametric Programming
- Title(参考訳): 二次的マルチパラメトリックプログラミングのための部分的改良型ニューラルネットワークモデル
- Authors: Fuat Can Beylunioglu, Mehrdad Pirnia, P. Robert Duimering,
- Abstract要約: 本研究では,大域的解関数の数学的構造を直接表現する部分教師付きNNアーキテクチャを提案する。
汎用的なNNトレーニング手法とは対照的に,PSNN法は最適化問題の数学的性質から直接モデル重みを導出する。
- 参考スコア(独自算出の注目度): 2.765106384328772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Networks (NN) with ReLU activation functions are used to model multiparametric quadratic optimization problems (mp-QP) in diverse engineering applications. Researchers have suggested leveraging the piecewise affine property of deep NN models to solve mp-QP with linear constraints, which also exhibit piecewise affine behaviour. However, traditional deep NN applications to mp-QP fall short of providing optimal and feasible predictions, even when trained on large datasets. This study proposes a partially-supervised NN (PSNN) architecture that directly represents the mathematical structure of the global solution function. In contrast to generic NN training approaches, the proposed PSNN method derives a large proportion of model weights directly from the mathematical properties of the optimization problem, producing more accurate solutions despite significantly smaller training data sets. Many energy management problems are formulated as QP, so we apply the proposed approach to energy systems (specifically DC optimal power flow) to demonstrate proof of concept. Model performance in terms of solution accuracy and speed of predictions was compared against a commercial solver and a generic Deep NN model based on classical training. Results show KKT sufficient conditions for PSNN consistently outperform generic NN architectures with classical training using far less data, including when tested on extreme, out-of-training distribution test data. Given its speed advantages over traditional solvers, the PSNN model can quickly produce optimal and feasible solutions within a second for millions of input parameters sampled from a distribution of stochastic demands and renewable generator dispatches, which can be used for simulations and long term planning.
- Abstract(参考訳): ReLUアクティベーション機能を持つニューラルネットワーク(NN)は、多様な工学的応用において、多パラメータ二次最適化問題(mp-QP)をモデル化するために用いられる。
研究者は深部NNモデルの断片的アフィン特性を利用して線形制約を持つmp-QPを解くことを提案しており、これも断片的アフィン挙動を示す。
しかし、mp-QPに対する従来のディープNNアプリケーションは、大規模なデータセットでトレーニングされた場合でも、最適で実現可能な予測を提供していない。
本研究では,大域的解関数の数学的構造を直接表現する部分教師付きNNアーキテクチャを提案する。
汎用的なNNトレーニング手法とは対照的に、PSNN法は最適化問題の数学的性質から直接モデル重みを導出し、トレーニングデータセットが大幅に小さいにもかかわらずより正確な解を生成する。
多くのエネルギー管理問題はQPとして定式化されているので、提案手法をエネルギーシステム(特にDC最適潮流)に適用して概念実証を行う。
解法精度と予測速度のモデル性能を,古典的学習に基づく一般のDeep NNモデルと比較した。
その結果、PSNNの十分な条件は、極端にトレーニング外な分散テストデータでのテストを含む、はるかに少ないデータを使用した古典的なトレーニングにより、ジェネリックNNアーキテクチャを一貫して上回ります。
従来の解法よりも高速であるので、PSNNモデルは、確率的要求の分布と再生可能発電機のディスパッチからサンプリングされた数百万の入力パラメータに対して、1秒以内に最適で実現可能なソリューションを迅速に生成することができ、シミュレーションや長期計画に使用できる。
関連論文リスト
- Performance Analysis of Convolutional Neural Network By Applying Unconstrained Binary Quadratic Programming [0.0]
畳み込みニューラルネットワーク(CNN)は、コンピュータビジョンとビッグデータ分析において重要であるが、大規模なデータセットでトレーニングされた場合には、かなりの計算リソースを必要とする。
CNNトレーニングを高速化するために,Unconstrained Binary Quadratic Programming (UBQP) と Gradient Descent (SGD) を組み合わせたハイブリッド最適化手法を提案する。
提案手法は, BP-CNNベースラインの10-15%の精度向上を実現し, 同様の実行時間を維持する。
論文 参考訳(メタデータ) (2025-05-30T21:25:31Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
ディープニューラルネットワーク(DNN)モデルは、プログラミング目的に使用される。
本稿では,凸型神経回復モデルについて検討する。
定常的非次元目的物はすべて,グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
また, 静止非次元目的物はすべて, グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
論文 参考訳(メタデータ) (2023-12-19T23:04:56Z) - Deep Learning-based surrogate models for parametrized PDEs: handling
geometric variability through graph neural networks [0.0]
本研究では,時間依存型PDEシミュレーションにおけるグラフニューラルネットワーク(GNN)の可能性について検討する。
本稿では,データ駆動型タイムステッピング方式に基づくサロゲートモデルを構築するための体系的戦略を提案する。
GNNは,計算効率と新たなシナリオへの一般化の観点から,従来の代理モデルに代わる有効な代替手段を提供することができることを示す。
論文 参考訳(メタデータ) (2023-08-03T08:14:28Z) - Sparse Deep Neural Network for Nonlinear Partial Differential Equations [3.0069322256338906]
本稿では,非線形偏微分方程式の解の適応近似に関する数値的研究について述べる。
特定の特異点を持つ関数を表現するために、複数のパラメータを持つスパース正規化を備えたディープニューラルネットワーク(DNN)を開発する。
数値的な例では、提案したSDNNが生成する解はスパースで正確である。
論文 参考訳(メタデータ) (2022-07-27T03:12:16Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Optimal Transport Based Refinement of Physics-Informed Neural Networks [0.0]
我々は、最適輸送(OT)の概念に基づく偏微分方程式(PDE)の解法として、よく知られた物理情報ニューラルネットワーク(PINN)の改良戦略を提案する。
PINNの解法は、完全接続された病理のスペクトルバイアス、不安定な勾配、収束と精度の難しさなど、多くの問題に悩まされている。
本稿では,既存の PINN フレームワークを補完する OT-based sample を用いて,Fokker-Planck-Kolmogorov Equation (FPKE) を解くための新しいトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2021-05-26T02:51:20Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
最適な電力フロー(ACOPF)のソリューションを解決するために、ディープニューラルネットワーク(DNN)を提案します。
提案されたSIDNNは、幅広いOPFスキームと互換性がある。
他のLearning-to-OPFスキームとシームレスに統合できる。
論文 参考訳(メタデータ) (2021-03-27T00:45:23Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
メタラーニング(MTL)アプローチを用いて訓練されたDNNベースのOPF予測器を提案する。
開発したOPF予測器はベンチマークIEEEバスシステムを用いてシミュレーションにより検証される。
論文 参考訳(メタデータ) (2020-12-21T17:39:51Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。