論文の概要: Q-MAML: Quantum Model-Agnostic Meta-Learning for Variational Quantum Algorithms
- arxiv url: http://arxiv.org/abs/2501.05906v1
- Date: Fri, 10 Jan 2025 12:07:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:28:03.459247
- Title: Q-MAML: Quantum Model-Agnostic Meta-Learning for Variational Quantum Algorithms
- Title(参考訳): Q-MAML:変分量子アルゴリズムのための量子モデル非依存メタラーニング
- Authors: Junyong Lee, JeiHee Cho, Shiho Kim,
- Abstract要約: モデル非依存メタラーニング(MAML)技術にインスパイアされた古典的手法を用いて,パラメータ化量子回路(PQC)を最適化するための新しいフレームワークを提案する。
我々のフレームワークはLearnerと呼ばれる古典的なニューラルネットワークを備えており、Learnerの出力を初期パラメータとしてPQCと相互作用する。
適応フェーズでは、学習者は変わらないまま、より正確な値に収束するために、いくつかのPQC更新しか必要としない。
- 参考スコア(独自算出の注目度): 4.525216077859531
- License:
- Abstract: In the Noisy Intermediate-Scale Quantum (NISQ) era, using variational quantum algorithms (VQAs) to solve optimization problems has become a key application. However, these algorithms face significant challenges, such as choosing an effective initial set of parameters and the limited quantum processing time that restricts the number of optimization iterations. In this study, we introduce a new framework for optimizing parameterized quantum circuits (PQCs) that employs a classical optimizer, inspired by Model-Agnostic Meta-Learning (MAML) technique. This approach aim to achieve better parameter initialization that ensures fast convergence. Our framework features a classical neural network, called Learner}, which interacts with a PQC using the output of Learner as an initial parameter. During the pre-training phase, Learner is trained with a meta-objective based on the quantum circuit cost function. In the adaptation phase, the framework requires only a few PQC updates to converge to a more accurate value, while the learner remains unchanged. This method is highly adaptable and is effectively extended to various Hamiltonian optimization problems. We validate our approach through experiments, including distribution function mapping and optimization of the Heisenberg XYZ Hamiltonian. The result implies that the Learner successfully estimates initial parameters that generalize across the problem space, enabling fast adaptation.
- Abstract(参考訳): 雑音中規模量子(NISQ)時代には、最適化問題を解くために変分量子アルゴリズム(VQA)が重要な用途となっている。
しかしながら、これらのアルゴリズムは、効果的な初期パラメータのセットの選択や、最適化イテレーションの数を制限する量子処理時間制限など、重大な課題に直面している。
本研究では,モデル非依存メタラーニング(MAML)技術にインスパイアされた古典的オプティマイザを用いたパラメータ化量子回路(PQC)の最適化フレームワークを提案する。
このアプローチは、高速収束を保証するより良いパラメータ初期化を実現することを目的としている。
我々のフレームワークはLearner}と呼ばれる古典的なニューラルネットワークを備えており、Learnerの出力を初期パラメータとしてPQCと相互作用する。
事前学習フェーズでは、Learnerは量子回路コスト関数に基づいてメタオブジェクトでトレーニングされる。
適応フェーズでは、学習者は変わらないまま、より正確な値に収束するために、いくつかのPQC更新しか必要としない。
この方法は高度に適応可能であり、様々なハミルトン最適化問題に効果的に拡張できる。
我々は分布関数写像やハイゼンベルクXYZハミルトニアンの最適化を含む実験を通してアプローチを検証する。
その結果、Learnerは問題空間全体にわたって一般化する初期パラメータをうまく推定し、高速な適応を可能にした。
関連論文リスト
- A coherent approach to quantum-classical optimization [0.0]
ハイブリッド量子古典最適化技術は、量子計算資源の削減を可能にすることが示されている。
我々は、コヒーレンスエントロピーを量子状態の適合性を決定する重要な指標とみなす。
本稿では,従来の課題に対するアプローチを大幅に改善する量子古典最適化プロトコルを提案する。
論文 参考訳(メタデータ) (2024-09-20T22:22:53Z) - A Monte Carlo Tree Search approach to QAOA: finding a needle in the haystack [0.0]
変分量子アルゴリズム(VQA)は、短期量子ハードウェアの限られた能力に対応するために設計された、ハイブリッド量子古典法の一種である。
本稿では,正規パラメータパターンの活用が決定木構造に深く影響し,フレキシブルかつノイズ耐性のある最適化戦略を可能にすることを示す。
論文 参考訳(メタデータ) (2024-08-22T18:00:02Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Variational Quantum Approximate Spectral Clustering for Binary
Clustering Problems [0.7550566004119158]
本稿では,変分量子近似スペクトルクラスタリング(VQASC)アルゴリズムを提案する。
VQASCは、伝統的に古典的な問題で必要とされるシステムサイズ、Nよりも少ないパラメータの最適化を必要とする。
合成と実世界の両方のデータセットから得られた数値結果について述べる。
論文 参考訳(メタデータ) (2023-09-08T17:54:42Z) - Challenges of variational quantum optimization with measurement shot noise [0.0]
問題の大きさが大きくなるにつれて、量子資源のスケーリングが一定の成功確率に達するか検討する。
この結果から,ハイブリッド量子古典アルゴリズムは古典外ループの破壊力を回避する必要がある可能性が示唆された。
論文 参考訳(メタデータ) (2023-07-31T18:01:15Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
適応微分組立問題集合型アンザッツ変分固有解法(ADAPTVQE)における自己一貫したフィールドアプローチ(SCF)を提案する。
このフレームワークは、短期量子コンピュータ上の化学系の効率的な量子シミュレーションに使用される。
論文 参考訳(メタデータ) (2022-12-21T23:15:17Z) - Meta-Learning Digitized-Counterdiabatic Quantum Optimization [3.0638256603183054]
本稿では,リカレントニューラルネットワークを用いたメタラーニング手法を用いて,変分最適化に適した初期パラメータを求める問題に取り組む。
我々は、最近提案されたディジタル化対数量子近似アルゴリズム(DC-QAOA)を用いて、この手法について検討する。
メタラーニングとDC-QAOAを組み合わせることで、MaxCut問題やSherrington-Kirkpatrickモデルなど、異なるモデルに対する最適な初期パラメータを見つけることができる。
論文 参考訳(メタデータ) (2022-06-20T18:57:50Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - FLIP: A flexible initializer for arbitrarily-sized parametrized quantum
circuits [105.54048699217668]
任意サイズのパラメタライズド量子回路のためのFLexible Initializerを提案する。
FLIPは任意の種類のPQCに適用することができ、初期パラメータの一般的なセットに頼る代わりに、成功したパラメータの構造を学ぶように調整されている。
本稿では, 3つのシナリオにおいてFLIPを用いることの利点を述べる。不毛な高原における問題ファミリ, 最大カット問題インスタンスを解くPQCトレーニング, 1次元フェルミ-ハッバードモデルの基底状態エネルギーを求めるPQCトレーニングである。
論文 参考訳(メタデータ) (2021-03-15T17:38:33Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。