論文の概要: On the Privacy Risks of Spiking Neural Networks: A Membership Inference Analysis
- arxiv url: http://arxiv.org/abs/2502.13191v1
- Date: Tue, 18 Feb 2025 15:19:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 14:01:05.372077
- Title: On the Privacy Risks of Spiking Neural Networks: A Membership Inference Analysis
- Title(参考訳): スパイクニューラルネットワークのプライバシリスクについて:メンバーシップ推論分析
- Authors: Junyi Guan, Abhijith Sharma, Chong Tian, Salem Lahlou,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、現実のアプリケーションにおいて、そのエネルギー効率と堅牢性のためにますます研究されている。
本研究では,SNNのMIAに対する感受性について検討する。
MIAは、あるサンプルがトレーニングデータセットの一部であるかどうかを敵が判断しようとする、大きなプライバシー上の脅威である。
- 参考スコア(独自算出の注目度): 1.8029689470712593
- License:
- Abstract: Spiking Neural Networks (SNNs) are increasingly explored for their energy efficiency and robustness in real-world applications, yet their privacy risks remain largely unexamined. In this work, we investigate the susceptibility of SNNs to Membership Inference Attacks (MIAs) -- a major privacy threat where an adversary attempts to determine whether a given sample was part of the training dataset. While prior work suggests that SNNs may offer inherent robustness due to their discrete, event-driven nature, we find that its resilience diminishes as latency (T) increases. Furthermore, we introduce an input dropout strategy under black box setting, that significantly enhances membership inference in SNNs. Our findings challenge the assumption that SNNs are inherently more secure, and even though they are expected to be better, our results reveal that SNNs exhibit privacy vulnerabilities that are equally comparable to Artificial Neural Networks (ANNs). Our code is available at https://anonymous.4open.science/r/MIA_SNN-3610.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)は、現実世界のアプリケーションにおいて、そのエネルギー効率と堅牢性のためにますます研究されているが、そのプライバシーリスクはほとんど検討されていない。
本研究では,SNNの会員推論攻撃(MIA)に対する感受性について検討する。これは,あるサンプルがトレーニングデータセットの一部であるかどうかを敵が判断しようとする,主要なプライバシー上の脅威である。
以前の研究では、SNNはその離散的でイベント駆動的な性質のため、固有の堅牢性を提供する可能性が示唆されていたが、レイテンシ(T)が増加するにつれて、そのレジリエンスが低下することがわかった。
さらに、ブラックボックス設定下での入力ドロップアウト戦略を導入し、SNNにおけるメンバシップ推論を大幅に強化する。
我々の研究結果は、SNNは本質的により安全であるという仮定に挑戦し、より優れたものと思われるが、我々の結果は、SNNがArtificial Neural Networks(ANN)に匹敵するプライバシー上の脆弱性を示すことを示している。
私たちのコードはhttps://anonymous.4open.science/r/MIA_SNN-3610で公開されています。
関連論文リスト
- Are Neuromorphic Architectures Inherently Privacy-preserving? An Exploratory Study [3.4673556247932225]
人工ニューラルネットワーク(ANN)の代替手段としてスパイキングニューラルネットワーク(SNN)が登場
本稿では,SNNが本質的により優れたプライバシを提供するかどうかを検討する。
学習アルゴリズム(勾配と進化の代理)、フレームワーク(snnTorch, TENNLab, LAVA)、およびパラメータがSNNプライバシに与える影響を分析する。
論文 参考訳(メタデータ) (2024-11-10T22:18:53Z) - Data Poisoning-based Backdoor Attack Framework against Supervised Learning Rules of Spiking Neural Networks [3.9444202574850755]
スパイキングニューラルネットワーク(SNN)は、低エネルギー消費と高ロバスト性で知られている。
本稿では,バックドア攻撃時の教師付き学習規則により訓練されたSNNの堅牢性について検討する。
論文 参考訳(メタデータ) (2024-09-24T02:15:19Z) - RSC-SNN: Exploring the Trade-off Between Adversarial Robustness and Accuracy in Spiking Neural Networks via Randomized Smoothing Coding [17.342181435229573]
スパイキングニューラルネットワーク(SNN)は、そのユニークな神経力学と低出力の性質により、広く注目を集めている。
以前の研究では、Poissonコーディングを持つSNNは、小規模データセット上のArtificial Neural Networks(ANN)よりも堅牢であることが実証されている。
この研究は理論上、SNNの固有の対向ロバスト性はポアソン符号に由来することを証明している。
論文 参考訳(メタデータ) (2024-07-29T15:26:15Z) - Enhancing Adversarial Robustness in SNNs with Sparse Gradients [46.15229142258264]
スパイキングニューラルネットワーク(SNN)は、そのエネルギー効率の高い操作と生物学的にインスパイアされた構造に対して大きな注目を集めている。
既存の技術は、ANNから適応したものであれ、SNNのために特別に設計されたものであれ、SNNの訓練や強力な攻撃に対する防御に制限がある。
本稿では,SNNの頑健性を高めるための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T05:39:27Z) - Unraveling Privacy Risks of Individual Fairness in Graph Neural Networks [66.0143583366533]
グラフニューラルネットワーク(GNN)は、その拡張現実の応用により、大きな注目を集めている。
信頼できるGNNを構築するためには、公平性とプライバシという2つの側面が重要な考慮事項として浮上している。
これまでの研究では、GNNの公平性とプライバシの側面を別々に検討し、GNNのパフォーマンスとのトレードオフを明らかにしている。
しかし、この2つの側面の相互作用は未解明のままである。
論文 参考訳(メタデータ) (2023-01-30T14:52:23Z) - Trustworthy Graph Neural Networks: Aspects, Methods and Trends [115.84291569988748]
グラフニューラルネットワーク(GNN)は,さまざまな実世界のシナリオに対して,有能なグラフ学習手法として登場した。
パフォーマンス指向のGNNは、敵の攻撃に対する脆弱性のような潜在的な副作用を示す。
こうした意図しない害を避けるためには、信頼度に特徴付けられる有能なGNNを構築する必要がある。
論文 参考訳(メタデータ) (2022-05-16T02:21:09Z) - A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy,
Robustness, Fairness, and Explainability [59.80140875337769]
グラフニューラルネットワーク(GNN)は近年,急速な発展を遂げている。
GNNは個人情報をリークしたり、敵対的攻撃に弱いり、トレーニングデータから社会的バイアスを継承したり、拡大したりすることができる。
本稿では、プライバシー、堅牢性、公正性、説明可能性の計算面におけるGNNの包括的調査を行う。
論文 参考訳(メタデータ) (2022-04-18T21:41:07Z) - Toward Robust Spiking Neural Network Against Adversarial Perturbation [22.56553160359798]
スパイキングニューラルネットワーク(SNN)は、現実の効率クリティカルなアプリケーションにますます多くデプロイされている。
研究者はすでに、SNNを敵の例で攻撃できることを実証している。
我々の知る限りでは、これはSNNの堅牢なトレーニングに関する最初の分析である。
論文 参考訳(メタデータ) (2022-04-12T21:26:49Z) - Robustness of Bayesian Neural Networks to White-Box Adversarial Attacks [55.531896312724555]
ベイジアンネットワーク(BNN)は、ランダム性を組み込むことで、敵の攻撃を扱うのに頑丈で適している。
我々はベイズ的推論(つまり変分ベイズ)をDenseNetアーキテクチャに融合させることで、BNN-DenseNetと呼ばれるBNNモデルを作成する。
逆向きに訓練されたBNNは、ほとんどの実験で非ベイズ的で逆向きに訓練されたBNNよりも優れています。
論文 参考訳(メタデータ) (2021-11-16T16:14:44Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
ディープニューラルネットワーク(DNN)は多くの異なる問題設定において最先端の結果を達成する。
DNNはしばしばブラックボックスシステムとして扱われ、評価と検証が複雑になる。
コンピュータビジョンタスクにおける畳み込みニューラルネットワーク(CNN)の成功に触発された、有望な分野のひとつは、対称幾何学的変換に関する知識を取り入れることである。
論文 参考訳(メタデータ) (2020-06-30T14:56:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。