論文の概要: Reflection of Episodes: Learning to Play Game from Expert and Self Experiences
- arxiv url: http://arxiv.org/abs/2502.13388v1
- Date: Wed, 19 Feb 2025 02:53:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 14:00:02.473562
- Title: Reflection of Episodes: Learning to Play Game from Expert and Self Experiences
- Title(参考訳): エピソードの反映: 専門家と自己経験からゲームを学ぶ
- Authors: Xiaojie Xu, Zongyuan Li, Chang Lu, Runnan Qi, Yanan Ni, Lumin Jiang, Xiangbei Liu, Xuebo Zhang, Yongchun Fang, Kuihua Huang, Xian Guo, Zhanghua Wu, Zhenya Li,
- Abstract要約: 本稿では,専門家の経験と自己経験に基づくROE(Reflection of Episodes)フレームワークを提案する。
実験では,TextStarCraft IIにおける極めて難易度の高い条件下で,本手法がロボットを圧倒した。
- 参考スコア(独自算出の注目度): 12.422732989325725
- License:
- Abstract: StarCraft II is a complex and dynamic real-time strategy (RTS) game environment, which is very suitable for artificial intelligence and reinforcement learning research. To address the problem of Large Language Model(LLM) learning in complex environments through self-reflection, we propose a Reflection of Episodes(ROE) framework based on expert experience and self-experience. This framework first obtains key information in the game through a keyframe selection method, then makes decisions based on expert experience and self-experience. After a game is completed, it reflects on the previous experience to obtain new self-experience. Finally, in the experiment, our method beat the robot under the Very Hard difficulty in TextStarCraft II. We analyze the data of the LLM in the process of the game in detail, verified its effectiveness.
- Abstract(参考訳): StarCraft IIは複雑なリアルタイム戦略(RTS)ゲーム環境であり、人工知能と強化学習研究に非常に適している。
自己回帰による複雑な環境におけるLarge Language Model(LLM)学習の課題に対処するため,専門家の経験と自己経験に基づくROEフレームワークを提案する。
このフレームワークはまず、まずキーフレーム選択方法を通じてゲーム内のキー情報を取得し、その後、専門家の経験と自己経験に基づいて決定を行う。
ゲームが完了すると、以前の経験を反映して新しい自己経験を得る。
最後に,本実験では,TextStarCraft IIにおいて,非常に難易度の高い条件下でロボットを倒す実験を行った。
ゲーム進行過程におけるLLMのデータを分析し,その有効性を検証した。
関連論文リスト
- From Laws to Motivation: Guiding Exploration through Law-Based Reasoning and Rewards [12.698095783768322]
大規模言語モデル(LLM)と強化学習(RL)は、自律エージェントを構築するための強力なアプローチである。
ゲーム環境の基本法則をモデル化するために,インタラクションレコードから経験を抽出する手法を提案する。
論文 参考訳(メタデータ) (2024-11-24T15:57:53Z) - CivRealm: A Learning and Reasoning Odyssey in Civilization for
Decision-Making Agents [63.79739920174535]
文明ゲームに触発された環境であるCivRealmを紹介する。
CivRealmは、意思決定エージェントにとってユニークな学習と推論の課題である。
論文 参考訳(メタデータ) (2024-01-19T09:14:11Z) - Large Language Models Play StarCraft II: Benchmarks and A Chain of Summarization Approach [7.693497788883165]
VoyageやMetaGPTのような大規模言語モデル(LLM)エージェントは、複雑なタスクを解く大きな可能性を示す。
本稿では,生観測処理のための単一フレーム要約と,ゲーム情報解析のための多フレーム要約を含む要約手法を提案する。
1. LLMはStarCraft IIのシナリオに対処するのに必要な知識と複雑な計画能力を持っている; 2. 人間の専門家は、LLMエージェントのパフォーマンスは、StarCraft IIを8年間プレイした平均的なプレイヤーのそれに近いと考えている; 3. LLMエージェントはAIで構築されたエージェントを倒すことができる。
論文 参考訳(メタデータ) (2023-12-19T05:27:16Z) - Technical Challenges of Deploying Reinforcement Learning Agents for Game
Testing in AAA Games [58.720142291102135]
本稿では,既存の自動ゲームテストソリューションに,スクリプト型ボットをベースとして,実験的な強化学習システムを追加する取り組みについて述べる。
ゲーム制作において強化学習を活用するためのユースケースを示し、ゲームのために同じ旅をしたいと思う人なら誰でも遭遇する最大の時間をカバーしています。
我々は、機械学習、特にゲーム生産において効果的なツールである強化学習を作るのに価値があり、必要であると考えるいくつかの研究指針を提案する。
論文 参考訳(メタデータ) (2023-07-19T18:19:23Z) - SPRING: Studying the Paper and Reasoning to Play Games [102.5587155284795]
我々は,ゲーム本来の学術論文を読み取るための新しいアプローチ,SPRINGを提案し,大言語モデル(LLM)を通してゲームの説明とプレイの知識を利用する。
実験では,クラフトオープンワールド環境の設定下で,異なる形態のプロンプトによって引き起こされる文脈内「推論」の品質について検討した。
我々の実験は、LLMが一貫したチェーン・オブ・シークレットによって誘導されると、洗練された高レベル軌道の完成に大きな可能性があることを示唆している。
論文 参考訳(メタデータ) (2023-05-24T18:14:35Z) - CCPT: Automatic Gameplay Testing and Validation with
Curiosity-Conditioned Proximal Trajectories [65.35714948506032]
Curiosity-Conditioned Proximal Trajectories (CCPT)法は、好奇心と模倣学習を組み合わせてエージェントを訓練して探索する。
CCPTが複雑な環境を探索し、ゲームプレイの問題を発見し、その過程におけるデザインの監視を行い、それらをゲームデザイナーに直接認識し、強調する方法について説明する。
論文 参考訳(メタデータ) (2022-02-21T09:08:33Z) - Applying supervised and reinforcement learning methods to create
neural-network-based agents for playing StarCraft II [0.0]
本稿では,汎用的な教師付き強化学習でトレーニングしたStarCraft IIのフル2プレーヤマッチングを実現するニューラルネットワークアーキテクチャを提案する。
本実装では,ゲーム内スクリプトボットと比較して,非自明な性能を実現している。
論文 参考訳(メタデータ) (2021-09-26T20:08:10Z) - SCC: an efficient deep reinforcement learning agent mastering the game
of StarCraft II [15.612456049715123]
AlphaStarは、StarCraft IIのGrandMasterレベルに達するAIであり、深い強化学習が達成できることを示す驚くべきマイルストーンです。
我々は、深層強化学習エージェント、StarCraft Commander (SCC)を提案する。
SCCは、テストマッチでグランドマスタープレーヤーを倒し、ライブイベントでトッププロフェッショナルプレーヤーを倒す人間のパフォーマンスを実証します。
論文 参考訳(メタデータ) (2020-12-24T08:43:44Z) - Reinforcement Learning with Videos: Combining Offline Observations with
Interaction [151.73346150068866]
強化学習は、ロボットが経験からスキルを得るための強力なフレームワークである。
人間のビデオは、広くて興味深い体験のソースとしてすぐに手に入る。
ビデオによる強化学習のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-12T17:15:48Z) - Bootstrapping a DQN Replay Memory with Synthetic Experiences [0.0]
学習者を支援するために,非決定論的離散環境において合成体験を生成するアルゴリズムを提案する。
The Interpolated Experience Replay are evaluate on the FrozenLake environment and we show that it can support the agent to learn faster and better than the classic version。
論文 参考訳(メタデータ) (2020-02-04T15:36:36Z) - Exploration Based Language Learning for Text-Based Games [72.30525050367216]
本研究は,テキストベースのコンピュータゲームにおいて,最先端の性能を発揮できる探索・模倣学習型エージェントを提案する。
テキストベースのコンピュータゲームは、自然言語でプレイヤーの世界を記述し、プレイヤーがテキストを使ってゲームと対話することを期待する。
これらのゲームは、言語理解、問題解決、および人工エージェントによる言語生成のためのテストベッドと見なすことができるため、興味がある。
論文 参考訳(メタデータ) (2020-01-24T03:03:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。