論文の概要: Complex Ontology Matching with Large Language Model Embeddings
- arxiv url: http://arxiv.org/abs/2502.13619v1
- Date: Wed, 19 Feb 2025 10:56:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 14:01:31.839453
- Title: Complex Ontology Matching with Large Language Model Embeddings
- Title(参考訳): 大規模言語モデル埋め込みを用いた複雑なオントロジーマッチング
- Authors: Guilherme Sousa, Rinaldo Lima, Cassia Trojahn,
- Abstract要約: 本稿では,大規模言語モデル(LLM)を表現的対応を生成するアプローチに統合することを提案する。
対応の生成は、例のサブグラフの類似した環境をマッチングすることによって行われる。
- 参考スコア(独自算出の注目度): 0.21847754147782888
- License:
- Abstract: Ontology, and more broadly, Knowledge Graph Matching is a challenging task in which expressiveness has not been fully addressed. Despite the increasing use of embeddings and language models for this task, approaches for generating expressive correspondences still do not take full advantage of these models, in particular, large language models (LLMs). This paper proposes to integrate LLMs into an approach for generating expressive correspondences based on alignment need and ABox-based relation discovery. The generation of correspondences is performed by matching similar surroundings of instance sub-graphs. The integration of LLMs results in different architectural modifications, including label similarity, sub-graph matching, and entity matching. The performance word embeddings, sentence embeddings, and LLM-based embeddings, was compared. The results demonstrate that integrating LLMs surpasses all other models, enhancing the baseline version of the approach with a 45\% increase in F-measure.
- Abstract(参考訳): オントロジー、より広い範囲において、知識グラフマッチングは、表現性を完全に解決していない難しいタスクである。
このタスクには埋め込みや言語モデルの利用が増えているが、表現力のある対応を生成するアプローチは、これらのモデル、特に大きな言語モデル(LLM)を十分に活用していない。
本稿では、アライメント要求とABoxに基づく関係発見に基づく表現的対応を生成するアプローチにLLMを統合することを提案する。
対応の生成は、例のサブグラフの類似した環境をマッチングすることによって行われる。
LLMの統合は、ラベルの類似性、サブグラフマッチング、エンティティマッチングなど、さまざまなアーキテクチャ変更をもたらす。
性能単語の埋め込み,文埋め込み,LLMに基づく埋め込みを比較した。
その結果, LLMs の統合は他のモデルよりも優れており, F 測定の45 % 増加とともにベースラインバージョンが向上した。
関連論文リスト
- Matchmaker: Self-Improving Large Language Model Programs for Schema Matching [60.23571456538149]
本稿では,スキーママッチングのための合成言語モデルプログラムを提案する。
Matchmakerは、ラベル付きデモを必要とせずに、ゼロショットで自己改善する。
実証的に、Matchmakerが以前のMLベースのアプローチより優れている実世界の医療スキーママッチングベンチマークを実証する。
論文 参考訳(メタデータ) (2024-10-31T16:34:03Z) - Model-GLUE: Democratized LLM Scaling for A Large Model Zoo in the Wild [84.57103623507082]
本稿では,全体論的な大規模言語モデルスケーリングガイドラインであるModel-GLUEを紹介する。
既存のスケーリングテクニック,特に選択的マージ,および混合の変種をベンチマークする。
次に、異種モデル動物園の選択と集約のための最適な戦略を定式化する。
我々の手法は、マージ可能なモデルのクラスタリング、最適なマージ戦略選択、クラスタの統合を含む。
論文 参考訳(メタデータ) (2024-10-07T15:55:55Z) - LLM with Relation Classifier for Document-Level Relation Extraction [25.587850398830252]
大規模言語モデル(LLM)は、自然言語処理のための新しいパラダイムを生み出した。
本稿では,この性能ギャップの原因を解明し,関係のないエンティティペアによるLCMによる注意の分散を重要要因とする。
論文 参考訳(メタデータ) (2024-08-25T16:43:19Z) - Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
マルチタスク学習(MTL)は、タスク間の共有知識を活用し、一般化とパフォーマンスを改善するために設計された強力な機械学習パラダイムである。
本稿では,タスククラスタリングと特徴変換の交点におけるMTL手法を提案する。
両段階において、鍵となる側面は減った目標と特徴の解釈可能性を維持することである。
論文 参考訳(メタデータ) (2024-06-12T08:30:16Z) - Ensemble Learning for Heterogeneous Large Language Models with Deep Parallel Collaboration [39.35476224845088]
大規模言語モデル(LLM)は様々なタスクにおいて補完的な強みを示し、LLMアンサンブルの研究を動機付けている。
本稿では,各復号ステップで異なるLLMから得られる情報的確率分布を融合した学習自由アンサンブルフレームワークDeePEnを提案する。
論文 参考訳(メタデータ) (2024-04-19T08:52:22Z) - Bridging the Gap between Different Vocabularies for LLM Ensemble [10.669552498083709]
様々な大言語モデル(LLM)における語彙の相違は、これまでの研究を制約してきた。
語彙アライメント(EVA)を用いたLLMのアンサンブル手法を提案する。
EVAは様々なLLM間の語彙ギャップを橋渡しし、各生成ステップで巧妙にアンサンブルすることができる。
論文 参考訳(メタデータ) (2024-04-15T06:28:20Z) - Disentangled Representation Learning with Large Language Models for
Text-Attributed Graphs [57.052160123387104]
本稿では,TAGに対するLLMの推論と予測能力を向上させることができるDGTLモデルを提案する。
提案するDGTLモデルでは, グラフ構造情報をGNN層に組み込む。
実験により,提案したDGTLモデルにより,最先端のベースラインよりも優れた性能,あるいは同等の性能が得られることを示した。
論文 参考訳(メタデータ) (2023-10-27T14:00:04Z) - Large Language Models can Contrastively Refine their Generation for Better Sentence Representation Learning [57.74233319453229]
大規模言語モデル(LLM)は画期的な技術として登場し、それらの非並列テキスト生成能力は、基本的な文表現学習タスクへの関心を喚起している。
コーパスを生成するためにLLMの処理を分解するマルチレベルコントラスト文表現学習フレームワークであるMultiCSRを提案する。
実験の結果,MultiCSRはより高度なLCMをChatGPTの性能を超えつつ,ChatGPTに適用することで最先端の成果を得られることがわかった。
論文 参考訳(メタデータ) (2023-10-17T03:21:43Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
大規模言語モデル(LLM)は、より大きな文脈長を扱う。
LLM は、ターゲットテキストが大きければ SotA を一貫して上回る。
ゼロショット学習よりもパフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-10-12T17:17:27Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
大規模言語モデル (LLMs) が最前線として登場し、様々なアプリケーションにおいて非並列の長所を示している。
LLMとグラフ構造化データを組み合わせることは、非常に興味深いトピックです。
本稿では、そのような統合を2つの主要なカテゴリに分岐する。
論文 参考訳(メタデータ) (2023-10-09T07:59:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。