論文の概要: Generalization error bound for denoising score matching under relaxed manifold assumption
- arxiv url: http://arxiv.org/abs/2502.13662v1
- Date: Wed, 19 Feb 2025 12:14:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 14:00:50.965080
- Title: Generalization error bound for denoising score matching under relaxed manifold assumption
- Title(参考訳): 緩和された多様体仮定の下でのスコアマッチングの一般化誤差境界
- Authors: Konstantin Yakovlev, Nikita Puchkin,
- Abstract要約: 非パラメトリックガウス混合による観測密度をモデル化する。
標準多様体の仮定を緩和し、サンプルを多様体から遠ざけるようにする。
評価値の近似と誤差の非漸近的境界を導出する。
- 参考スコア(独自算出の注目度): 6.21156827269762
- License:
- Abstract: We examine theoretical properties of the denoising score matching estimate. We model the density of observations with a nonparametric Gaussian mixture. We significantly relax the standard manifold assumption allowing the samples step away from the manifold. At the same time, we are still able to leverage a nice distribution structure. We derive non-asymptotic bounds on the approximation and generalization errors of the denoising score matching estimate. The rates of convergence are determined by the intrinsic dimension. Furthermore, our bounds remain valid even if we allow the ambient dimension grow polynomially with the sample size.
- Abstract(参考訳): そこで本研究では,デノナイジングスコアマッチング推定の理論的特性について検討した。
非パラメトリックガウス混合による観測密度をモデル化する。
我々は、サンプルが多様体から離れるように標準多様体の仮定を著しく緩和する。
同時に、優れた分散構造を活用できます。
偏差スコアマッチング推定の近似と一般化誤差の非漸近境界を導出する。
収束速度は内在次元によって決定される。
さらに、周囲次元がサンプルサイズと多項式的に大きくなることを許しても、我々の境界は有効である。
関連論文リスト
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set [20.166217494056916]
制約的な仮定を課さずに共分散推定器を構築するための原理的手法を提案する。
頑健な推定器は効率的に計算可能で一貫したものであることを示す。
合成および実データに基づく数値実験により、我々の頑健な推定器は最先端の推定器と競合していることが示された。
論文 参考訳(メタデータ) (2024-05-30T15:01:18Z) - Mean-Square Analysis of Discretized It\^o Diffusions for Heavy-tailed
Sampling [17.415391025051434]
重み付きポインカーの不等式に関連する伊藤拡散の自然クラスを離散化することにより、重み付き分布のクラスからのサンプリングの複雑さを分析する。
平均二乗解析に基づいて、ワッサーシュタイン2計量のターゲット分布に近い分布が$epsilon$のサンプルを得るための反復複雑性を確立する。
論文 参考訳(メタデータ) (2023-03-01T15:16:03Z) - Score Matching for Truncated Density Estimation on a Manifold [6.53626518989653]
近年, トラッピング密度推定にスコアマッチングを用いる方法が提案されている。
我々は、境界を持つリーマン多様体に一致するトランカットされたスコアの新たな拡張を示す。
シミュレーションデータ実験において、スコアマッチング推定器は真のパラメータ値を低い推定誤差で近似することができる。
論文 参考訳(メタデータ) (2022-06-29T14:14:49Z) - Heavy-tailed denoising score matching [5.371337604556311]
ランゲヴィン力学における複数のノイズレベルを連続的に初期化する反復的雑音スケーリングアルゴリズムを開発した。
実用面では、重み付きDSMを用いることで、スコア推定、制御可能なサンプリング収束、不均衡データセットに対するよりバランスのない非条件生成性能が改善される。
論文 参考訳(メタデータ) (2021-12-17T22:04:55Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
本稿では,ランダムウォークラプラシアンを用いたグラフスペクトル埋め込みが,ノード次数に対して完全に補正されたベクトル表現を生成することを示す。
次数補正ブロックモデルの特別な場合、埋め込みはK個の異なる点に集中し、コミュニティを表す。
論文 参考訳(メタデータ) (2021-05-03T16:36:27Z) - Interpolation and Learning with Scale Dependent Kernels [91.41836461193488]
非パラメトリックリッジレス最小二乗の学習特性について検討する。
スケール依存カーネルで定義される推定器の一般的な場合を考える。
論文 参考訳(メタデータ) (2020-06-17T16:43:37Z) - Spectral convergence of diffusion maps: improved error bounds and an
alternative normalisation [0.6091702876917281]
本稿では,分布がハイパートーラス上でサポートされているモデルの場合の誤差境界を改善するために,新しい手法を用いる。
我々は、スペクトルデータと演算子離散化のノルム収束の両方に対して、長年のポイントワイズ誤差境界と一致する。
また、シンクホーン重みに基づく拡散写像の別の正規化も導入する。
論文 参考訳(メタデータ) (2020-06-03T04:23:43Z) - Nonparametric Score Estimators [49.42469547970041]
未知分布によって生成されたサンプルの集合からスコアを推定することは確率モデルの推論と学習における基本的なタスクである。
正規化非パラメトリック回帰の枠組みの下で、これらの推定器の統一的なビューを提供する。
カールフリーカーネルと高速収束による計算効果を享受する反復正規化に基づくスコア推定器を提案する。
論文 参考訳(メタデータ) (2020-05-20T15:01:03Z) - Estimating Gradients for Discrete Random Variables by Sampling without
Replacement [93.09326095997336]
我々は、置換のないサンプリングに基づいて、離散確率変数に対する期待値の偏りのない推定器を導出する。
推定器は3つの異なる推定器のラオ・ブラックウェル化として導出可能であることを示す。
論文 参考訳(メタデータ) (2020-02-14T14:15:18Z) - Generative Modeling with Denoising Auto-Encoders and Langevin Sampling [88.83704353627554]
DAEとDSMの両方がスムーズな人口密度のスコアを推定することを示した。
次に、この結果をarXiv:1907.05600のホモトピー法に適用し、その経験的成功を理論的に正当化する。
論文 参考訳(メタデータ) (2020-01-31T23:50:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。