論文の概要: SCALAR: Scientific Citation-based Live Assessment of Long-context Academic Reasoning
- arxiv url: http://arxiv.org/abs/2502.13753v1
- Date: Wed, 19 Feb 2025 14:15:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 14:00:09.802242
- Title: SCALAR: Scientific Citation-based Live Assessment of Long-context Academic Reasoning
- Title(参考訳): SCALAR:Long-context Academic Reasoningの科学的引用に基づくライブアセスメント
- Authors: Renxi Wang, Honglin Mu, Liqun Ma, Lizhi Lin, Yunlong Feng, Timothy Baldwin, Xudong Han, Haonan Li,
- Abstract要約: 本稿では,SCALAR(Scientific Citation-based Live Assessment of Long-context Academic Reasoning)という新しいベンチマークを提案する。
SCALARは、人間のアノテーションを使わずに高品質な基底真理ラベルの自動生成、制御可能な難易度、動的更新機構を備えている。
- 参考スコア(独自算出の注目度): 26.070203190608687
- License:
- Abstract: Evaluating large language models' (LLMs) long-context understanding capabilities remains challenging. We present SCALAR (Scientific Citation-based Live Assessment of Long-context Academic Reasoning), a novel benchmark that leverages academic papers and their citation networks. SCALAR features automatic generation of high-quality ground truth labels without human annotation, controllable difficulty levels, and a dynamic updating mechanism that prevents data contamination. Using ICLR 2025 papers, we evaluate 8 state-of-the-art LLMs, revealing key insights about their capabilities and limitations in processing long scientific documents across different context lengths and reasoning types. Our benchmark provides a reliable and sustainable way to track progress in long-context understanding as LLM capabilities evolve.
- Abstract(参考訳): 大規模言語モデル(LLM)の長文理解能力の評価は依然として困難である。
学術論文とその引用ネットワークを活用した新しいベンチマークであるSCALAR(Scientific Citation-based Live Assessment of Long-context Academic Reasoning)を提案する。
SCALARは、人間のアノテーションを使わずに高品質な地上真実ラベルの自動生成、制御可能な難易度、データ汚染を防止する動的な更新メカニズムを備えている。
ICLR 2025の論文を用いて、8つの最先端LCMを評価し、異なる文脈の長さと推論タイプにわたる長い科学的文書の処理能力と制限に関する重要な洞察を明らかにした。
我々のベンチマークは、LLMの能力が進化するにつれて、長期コンテキスト理解の進捗を追跡する信頼性と持続可能な方法を提供する。
関連論文リスト
- Large Language Models Penetration in Scholarly Writing and Peer Review [43.600778691549706]
学術的な視点と次元にまたがる大規模言語モデルの浸透を評価する。
本実験は,学術的プロセスにおけるLLMの役割の増大を明らかにするために,textttLLMetricaの有効性を実証した。
これらの知見は、学術的信頼性を維持するために、LLMの使用における透明性、説明責任、倫理的実践の必要性を強調した。
論文 参考訳(メタデータ) (2025-02-16T16:37:34Z) - ETHIC: Evaluating Large Language Models on Long-Context Tasks with High Information Coverage [21.036912648701264]
本稿では,クエリの応答に必要な入力コンテキストの割合を定量化する,情報カバレッジ(IC)と呼ばれる新しい指標を提案する。
ETHICは、LLMがコンテキスト全体を活用する能力を評価するために設計された新しいベンチマークである。
論文 参考訳(メタデータ) (2024-10-22T09:35:42Z) - A Controlled Study on Long Context Extension and Generalization in LLMs [85.4758128256142]
広義のテキスト理解とテキスト内学習は、完全な文書コンテキストを利用する言語モデルを必要とする。
長期コンテキストモデルを直接訓練する際の実装上の課題のため、長期コンテキストを扱うためにモデルを拡張する多くの方法が提案されている。
我々は,一貫したベースモデルと拡張データを利用して,標準化された評価による拡張メソッドの制御プロトコルを実装した。
論文 参考訳(メタデータ) (2024-09-18T17:53:17Z) - DetectiveQA: Evaluating Long-Context Reasoning on Detective Novels [89.51834016940153]
本稿では,100K以上の平均コンテキスト長を持つナラティブ推論ベンチマークであるTectiveQAを紹介する。
探偵小説をデータソースとして使用し、様々な理由付け要素を自然に持っている。
私たちは中国語で600の質問を手動で注釈付けし、文脈情報と質問の英語版も提供しました。
論文 参考訳(メタデータ) (2024-09-04T06:28:22Z) - Leave No Document Behind: Benchmarking Long-Context LLMs with Extended Multi-Doc QA [71.04146366608904]
長いコンテキストモデリング能力は広く注目を集めており、超コンテキストウィンドウを持つLarge Language Models (LLMs) の出現につながっている。
拡張多文書質問応答(QA)によって現実的なシナリオに整合する新しい長文ベンチマークであるLoongを提案する。
Loong氏は、Spotlight Locating, Comparison, Clustering, Chain of Reasoningという、コンテキスト長の4つのタスクを紹介している。
論文 参考訳(メタデータ) (2024-06-25T09:42:56Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - SciAssess: Benchmarking LLM Proficiency in Scientific Literature Analysis [26.111514038691837]
SciAssessは、科学文献分析におけるLarge Language Models(LLM)の総合的な評価のためのベンチマークである。
記憶機能評価(L1)、記憶機能評価(L2)、分析・推論機能評価(L3)により,LLMの有効性を徹底的に評価することを目的とする。
それは、生物学、化学、材料、医学など、様々な科学分野から引き出された様々なタスクを含んでいる。
論文 参考訳(メタデータ) (2024-03-04T12:19:28Z) - An Interdisciplinary Outlook on Large Language Models for Scientific
Research [3.4108358650013573]
本稿では,異なる学問分野におけるLarge Language Models(LLM)の機能と制約について述べる。
本稿では, LLM が学術調査の強化を図り, 大量の出版物を要約することで, 文献レビューの促進などの具体的な事例を提示する。
LLMが直面する課題には、広範囲で偏見のあるデータセットへの依存や、それらの使用から生じる潜在的な倫理的ジレンマが含まれる。
論文 参考訳(メタデータ) (2023-11-03T19:41:09Z) - EpiK-Eval: Evaluation for Language Models as Epistemic Models [16.485951373967502]
セグメンテッドな物語から一貫した知識表現を定式化する上で,LLMの習熟度を評価するための新しい質問答えベンチマークであるEpiK-Evalを紹介する。
これらの欠点は、一般的な訓練目的の本質的な性質に起因していると論じる。
本研究の成果は,より堅牢で信頼性の高いLCMを開発する上での洞察を与えるものである。
論文 参考訳(メタデータ) (2023-10-23T21:15:54Z) - L-Eval: Instituting Standardized Evaluation for Long Context Language
Models [91.05820785008527]
長い文脈言語モデル(LCLM)のより標準化された評価を行うためにL-Evalを提案する。
20のサブタスク、508の長いドキュメント、2000以上の人間ラベルのクエリ応答対を含む新しい評価スイートを構築した。
その結果、一般的なn-gramマッチングの指標は人間の判断とよく相関しないことがわかった。
論文 参考訳(メタデータ) (2023-07-20T17:59:41Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
本稿では,大規模言語モデル(LLM)の様々な感情分析タスクの実行能力について検討する。
26のデータセット上の13のタスクのパフォーマンスを評価し、ドメイン固有のデータセットに基づいて訓練された小言語モデル(SLM)と比較した。
論文 参考訳(メタデータ) (2023-05-24T10:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。