論文の概要: Large Language Models Penetration in Scholarly Writing and Peer Review
- arxiv url: http://arxiv.org/abs/2502.11193v1
- Date: Sun, 16 Feb 2025 16:37:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:12:49.369805
- Title: Large Language Models Penetration in Scholarly Writing and Peer Review
- Title(参考訳): 書字とピアレビューにおける大規模言語モデルの浸透
- Authors: Li Zhou, Ruijie Zhang, Xunlian Dai, Daniel Hershcovich, Haizhou Li,
- Abstract要約: 学術的な視点と次元にまたがる大規模言語モデルの浸透を評価する。
本実験は,学術的プロセスにおけるLLMの役割の増大を明らかにするために,textttLLMetricaの有効性を実証した。
これらの知見は、学術的信頼性を維持するために、LLMの使用における透明性、説明責任、倫理的実践の必要性を強調した。
- 参考スコア(独自算出の注目度): 43.600778691549706
- License:
- Abstract: While the widespread use of Large Language Models (LLMs) brings convenience, it also raises concerns about the credibility of academic research and scholarly processes. To better understand these dynamics, we evaluate the penetration of LLMs across academic workflows from multiple perspectives and dimensions, providing compelling evidence of their growing influence. We propose a framework with two components: \texttt{ScholarLens}, a curated dataset of human- and LLM-generated content across scholarly writing and peer review for multi-perspective evaluation, and \texttt{LLMetrica}, a tool for assessing LLM penetration using rule-based metrics and model-based detectors for multi-dimensional evaluation. Our experiments demonstrate the effectiveness of \texttt{LLMetrica}, revealing the increasing role of LLMs in scholarly processes. These findings emphasize the need for transparency, accountability, and ethical practices in LLM usage to maintain academic credibility.
- Abstract(参考訳): LLM(Large Language Models)の普及は利便性をもたらすが、学術研究や学術過程の信頼性への懸念も高める。
これらのダイナミクスをより深く理解するために、複数の視点と次元から学術的ワークフローにまたがるLLMの浸透を評価し、その拡大する影響の確かな証拠を提供する。
本研究では,多面的評価のための学術的記述とピアレビューを対象とする人間とLLM生成コンテンツのキュレートされたデータセットである \textt{ScholarLens} と,多次元評価のためのルールベースメトリクスとモデルベース検出器を用いたLLM浸透評価ツールである \textt{LLMetrica} の2つのコンポーネントからなるフレームワークを提案する。
本実験は,学術的プロセスにおける LLM の役割の増大を明らかにするために, texttt{LLMetrica} の有効性を実証するものである。
これらの知見は、学術的信頼性を維持するために、LLMの使用における透明性、説明責任、倫理的実践の必要性を強調した。
関連論文リスト
- Understanding the Role of LLMs in Multimodal Evaluation Benchmarks [77.59035801244278]
本稿では,MLLM評価におけるLarge Language Model (LLM)バックボーンの役割について検討する。
本研究は4つのMLLMベンチマークと8つの最先端MLLMベンチマークを含む。
鍵となる発見は、いくつかのベンチマークでは視覚的な入力がなくても高いパフォーマンスを実現しており、最大50%のエラーレートは、LLMバックボーンにおける不十分な世界的知識に起因していることを示している。
論文 参考訳(メタデータ) (2024-10-16T07:49:13Z) - From Text to Insight: Leveraging Large Language Models for Performance Evaluation in Management [6.70908766695241]
本研究では,大規模言語モデル(LLM),特にGPT-4の可能性を探り,組織的タスクパフォーマンス評価における客観性を高める。
以上の結果から,GPT評価は人間の評価に匹敵するが,一貫性と信頼性が高いことが示唆された。
LLMはテキストベースのデータから意味のある構成物を抽出できるが、その範囲は特定のパフォーマンス評価形式に限定されている。
論文 参考訳(メタデータ) (2024-08-09T20:35:10Z) - Evaluating Linguistic Capabilities of Multimodal LLMs in the Lens of Few-Shot Learning [15.919493497867567]
本研究では,VALSEベンチマークを用いたマルチモーダル大規模言語モデル(MLLM)の性能評価を目的とした。
我々は,モデルサイズや事前学習データセットの異なる最先端MLLMの包括的評価を行った。
論文 参考訳(メタデータ) (2024-07-17T11:26:47Z) - DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation [75.81096662788254]
大規模言語モデル(LLM)はスケーラブルで経済的な評価指標である。
これらの評価者がどの程度信頼できるかという問題は、重要な研究課題として浮上している。
本稿では,デコンプリートとアグリゲートを提案し,その評価プロセスを教育実践に基づいて異なる段階に分解する。
論文 参考訳(メタデータ) (2024-05-24T08:12:30Z) - Unveiling LLM Evaluation Focused on Metrics: Challenges and Solutions [2.5179515260542544]
大規模言語モデル (LLM) は、テキスト生成、質問応答、テキスト要約における汎用的な応用のために、学界や業界全体で大きな注目を集めている。
パフォーマンスを定量化するためには、既存のメトリクスを包括的に把握することが重要です。
本稿では,メトリクスの観点からLLM評価を包括的に調査し,現在使用されているメトリクスの選択と解釈について考察する。
論文 参考訳(メタデータ) (2024-04-14T03:54:00Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
大規模言語モデル(LLM)から生成されたテキストの真偽を特徴付ける方法と予測法について検討する。
モデルアクティベーションの局所固有次元 (LID) を用いて, 内部アクティベーションを調査し, LLMの真偽を定量化する。
論文 参考訳(メタデータ) (2024-02-28T04:56:21Z) - From Understanding to Utilization: A Survey on Explainability for Large
Language Models [27.295767173801426]
この調査は、Large Language Models (LLMs) における説明可能性の向上を示唆している。
主に、トレーニング済みの Transformer ベースの LLM に重点を置いています。
説明可能性の活用を考える際に、モデル編集、制御生成、モデル拡張に集中するいくつかの魅力的な方法を検討する。
論文 参考訳(メタデータ) (2024-01-23T16:09:53Z) - LLM-in-the-loop: Leveraging Large Language Model for Thematic Analysis [18.775126929754833]
Thematic Analysis (TA)は、多くの分野や分野における定性的データを解析するために広く使われている。
ヒューマンコーダはデータの解釈とコーディングを複数のイテレーションで開発し、より深くする。
In-context Learning (ICL) を用いたTAを実現するための人間-LLM協調フレームワーク(LLM-in-the-loop)を提案する。
論文 参考訳(メタデータ) (2023-10-23T17:05:59Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
我々は,命令追従出力の識別におけるLLM評価器の能力をテストするために,挑戦的なメタ評価ベンチマーク LLMBar を導入する。
異なる評価器がLLMBarに対して異なる性能を示し、最高の評価器でさえ改善の余地があることが判明した。
論文 参考訳(メタデータ) (2023-10-11T16:38:11Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
大型言語モデル (LLM) は、一般的な要約データセットにおける元の参照要約よりも人間のアノテーションに好まれる。
より小さなテキスト要約モデルに対するLLM-as-reference学習設定について検討し,その性能が大幅に向上するかどうかを検討する。
論文 参考訳(メタデータ) (2023-05-23T16:56:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。