Utilizing Effective Dynamic Graph Learning to Shield Financial Stability from Risk Propagation
- URL: http://arxiv.org/abs/2502.13979v1
- Date: Tue, 18 Feb 2025 08:09:05 GMT
- Title: Utilizing Effective Dynamic Graph Learning to Shield Financial Stability from Risk Propagation
- Authors: Guanyuan Yu, Qing Li, Yu Zhao, Jun Wang, YiJun Chen, Shaolei Chen,
- Abstract summary: Financial risks can propagate across both tightly coupled temporal and spatial dimensions.
Risks embedded in unlabeled data are often difficult to detect.
We introduce GraphShield, a novel approach with three key innovations.
- Score: 10.464514412664862
- License:
- Abstract: Financial risks can propagate across both tightly coupled temporal and spatial dimensions, posing significant threats to financial stability. Moreover, risks embedded in unlabeled data are often difficult to detect. To address these challenges, we introduce GraphShield, a novel approach with three key innovations: Enhanced Cross-Domain Infor mation Learning: We propose a dynamic graph learning module to improve information learning across temporal and spatial domains. Advanced Risk Recognition: By leveraging the clustering characteristics of risks, we construct a risk recognizing module to enhance the identification of hidden threats. Risk Propagation Visualization: We provide a visualization tool for quantifying and validating nodes that trigger widespread cascading risks. Extensive experiments on two real-world and two open-source datasets demonstrate the robust performance of our framework. Our approach represents a significant advancement in leveraging artificial intelligence to enhance financial stability, offering a powerful solution to mitigate the spread of risks within financial networks.
Related papers
- VulRG: Multi-Level Explainable Vulnerability Patch Ranking for Complex Systems Using Graphs [20.407534993667607]
This work introduces a graph-based framework for vulnerability patch prioritization.
It integrates diverse data sources and metrics into a universally applicable model.
refined risk metrics enable detailed assessments at the component, asset, and system levels.
arXiv Detail & Related papers (2025-02-16T14:21:52Z) - Towards Robust Stability Prediction in Smart Grids: GAN-based Approach under Data Constraints and Adversarial Challenges [53.2306792009435]
We introduce a novel framework to detect instability in smart grids by employing only stable data.
It relies on a Generative Adversarial Network (GAN) where the generator is trained to create instability data that are used along with stable data to train the discriminator.
Our solution, tested on a dataset composed of real-world stable and unstable samples, achieve accuracy up to 97.5% in predicting grid stability and up to 98.9% in detecting adversarial attacks.
arXiv Detail & Related papers (2025-01-27T20:48:25Z) - Robust Graph Neural Networks for Stability Analysis in Dynamic Networks [16.077138803931295]
This paper explores the economic risk identification algorithm based on the graph neural network (GNN) algorithm.
It aims to provide financial institutions and regulators with more intelligent technical tools to help maintain the security and stability of the financial market.
arXiv Detail & Related papers (2024-10-29T06:11:36Z) - Enhancing Pre-Trained Language Models for Vulnerability Detection via Semantic-Preserving Data Augmentation [4.374800396968465]
We propose a data augmentation technique aimed at enhancing the performance of pre-trained language models for vulnerability detection.
By incorporating our augmented dataset in fine-tuning a series of representative code pre-trained models, up to 10.1% increase in accuracy and 23.6% increase in F1 can be achieved.
arXiv Detail & Related papers (2024-09-30T21:44:05Z) - Enhancing Data Quality through Self-learning on Imbalanced Financial Risk Data [11.910955398918444]
This study investigates data pre-processing techniques to enhance existing financial risk datasets.
We introduce TriEnhance, a straightforward technique that entails: (1) generating synthetic samples specifically tailored to the minority class, (2) filtering using binary feedback to refine samples, and (3) self-learning with pseudo-labels.
Our experiments reveal the efficacy of TriEnhance, with a notable focus on improving minority class calibration, a key factor for developing more robust financial risk prediction systems.
arXiv Detail & Related papers (2024-09-15T16:59:15Z) - Graph Dimension Attention Networks for Enterprise Credit Assessment [40.87056211723355]
We propose a novel architecture named Graph Dimension Attention Network (GDAN)
GDAN incorporates a dimension-level attention mechanism to capture fine-grained risk-related characteristics.
We explore the interpretability of the GNN-based method in financial scenarios and propose a data-centric explainer for GDAN, called GDAN-DistShift.
arXiv Detail & Related papers (2024-07-16T11:24:28Z) - Safety in Graph Machine Learning: Threats and Safeguards [84.26643884225834]
Despite their societal benefits, recent research highlights significant safety concerns associated with the widespread use of Graph ML models.
Lacking safety-focused designs, these models can produce unreliable predictions, demonstrate poor generalizability, and compromise data confidentiality.
In high-stakes scenarios such as financial fraud detection, these vulnerabilities could jeopardize both individuals and society at large.
arXiv Detail & Related papers (2024-05-17T18:11:11Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Company-as-Tribe: Company Financial Risk Assessment on Tribe-Style Graph
with Hierarchical Graph Neural Networks [62.94317686301643]
Company financial risk is ubiquitous and early risk assessment for listed companies can avoid considerable losses.
Traditional methods mainly focus on the financial statements of companies and lack the complex relationships among them.
We propose a novel Hierarchical Graph Neural Network (TH-GNN) for Tribe-style graphs via two levels, with the first level to encode the structure pattern of the tribes with contrastive learning, and the second level to diffuse information based on the inter-tribe relations.
arXiv Detail & Related papers (2023-01-31T09:17:13Z) - Privacy-preserving Graph Analytics: Secure Generation and Federated
Learning [72.90158604032194]
We focus on the privacy-preserving analysis of graph data, which provides the crucial capacity to represent rich attributes and relationships.
We discuss two directions, namely privacy-preserving graph generation and federated graph learning, which can jointly enable the collaboration among multiple parties each possessing private graph data.
arXiv Detail & Related papers (2022-06-30T18:26:57Z) - Cost-Sensitive Portfolio Selection via Deep Reinforcement Learning [100.73223416589596]
We propose a cost-sensitive portfolio selection method with deep reinforcement learning.
Specifically, a novel two-stream portfolio policy network is devised to extract both price series patterns and asset correlations.
A new cost-sensitive reward function is developed to maximize the accumulated return and constrain both costs via reinforcement learning.
arXiv Detail & Related papers (2020-03-06T06:28:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.