論文の概要: RocketKV: Accelerating Long-Context LLM Inference via Two-Stage KV Cache Compression
- arxiv url: http://arxiv.org/abs/2502.14051v2
- Date: Mon, 30 Jun 2025 19:01:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-02 15:54:40.030087
- Title: RocketKV: Accelerating Long-Context LLM Inference via Two-Stage KV Cache Compression
- Title(参考訳): RocketKV: 2段階KVキャッシュ圧縮による長期LLM推論の高速化
- Authors: Payman Behnam, Yaosheng Fu, Ritchie Zhao, Po-An Tsai, Zhiding Yu, Alexey Tumanov,
- Abstract要約: トレーニング不要なKVキャッシュ圧縮戦略であるRocketKVについて述べる。
第1段階では、入力シーケンストークンに対して粗粒永久KVキャッシュ消去を行う。
第2段階では、微粒のトップkスパースアテンションを行うために、ハイブリッドスパースアテンション方式を採用する。
- 参考スコア(独自算出の注目度): 25.190765258589707
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformer-based Large Language Models rely critically on the KV cache to efficiently handle extended contexts during the decode phase. Yet, the size of the KV cache grows proportionally with the input length, burdening both memory bandwidth and capacity as decoding progresses. To address this challenge, we present RocketKV, a training-free KV cache compression strategy containing two consecutive stages. In the first stage, it performs coarse-grain permanent KV cache eviction on the input sequence tokens. In the second stage, it adopts a hybrid sparse attention method to conduct fine-grain top-k sparse attention, approximating the attention scores by leveraging both head and sequence dimensionality reductions. We show that RocketKV provides a compression ratio of up to 400$\times$, end-to-end speedup of up to 3.7$\times$ as well as peak memory reduction of up to 32.6% in the decode phase on an NVIDIA A100 GPU compared to the full KV cache baseline, while achieving negligible accuracy loss on a variety of long-context tasks. We also propose a variant of RocketKV for multi-turn scenarios, which consistently outperforms other existing methods and achieves accuracy nearly on par with an oracle top-k attention scheme.
- Abstract(参考訳): トランスフォーマーベースの大規模言語モデルは、デコードフェーズ中に拡張コンテキストを効率的に処理するために、KVキャッシュに批判的に依存する。
しかし、KVキャッシュのサイズは入力長に比例して増加し、復号化が進むにつれてメモリ帯域幅と容量の両方を負担する。
この課題に対処するために,2段階の連続的なKVキャッシュ圧縮戦略であるRocketKVを提案する。
第1段階では、入力シーケンストークンに対して粗粒永久KVキャッシュ消去を行う。
第2段階では、頭部と列次元の減少を両立させることで、注目スコアを近似し、微粒のトップkスパースアテンションを行うためのハイブリッドスパースアテンション手法を採用する。
RocketKVは最大400$\times$、最大3.7$\times$、最大32.6%のピークメモリ削減をNVIDIA A100 GPUのフルKVキャッシュベースラインと比較して実現し、様々な長文タスクにおいて無視できる精度損失を達成している。
また,マルチターンシナリオに対するRocketKVの変種を提案する。これは既存の手法を一貫して上回り,オラクルトップクアテンション方式とほぼ同等の精度を実現する。
関連論文リスト
- DBudgetKV: Dynamic Budget in KV Cache Compression for Ensuring Optimal Performance [125.81664663201282]
我々はDBudgetKVと呼ばれる新しいKVキャッシュ圧縮手法を提案する。
これは、残りのKVキャッシュがフルキャッシュのパフォーマンスにマッチしそうにない場合に、注意に基づくメトリクスを信号として、プルーニングプロセスを停止させる。
提案手法は,メモリ空間を最適化するだけでなく,既存の手法に比べて推論時間を短縮する。
論文 参考訳(メタデータ) (2025-02-24T06:33:39Z) - QuantSpec: Self-Speculative Decoding with Hierarchical Quantized KV Cache [67.84112700032007]
大きな言語モデル(LLM)は、長いコンテキスト設定のためにエッジデバイスにデプロイされることが増えている。
これらのシナリオでは、キーバリュー(KV)キャッシュがGPUメモリとレイテンシの両方において主要なボトルネックとなっている。
そこで本研究では,ターゲットモデルのアーキテクチャを共有するが,階層的な4ビット量子化KVキャッシュと4ビット量子化重みを併用して高速化を行う,新たな自己推論型デコーディングフレームワークであるQuantSpecを提案する。
論文 参考訳(メタデータ) (2025-02-05T20:43:48Z) - FastKV: KV Cache Compression for Fast Long-Context Processing with Token-Selective Propagation [4.856070170902535]
大きな言語モデル(LLM)は、長いコンテキストシーケンスを扱うのに優れている。
コンテキスト情報を格納するために、かなりのキーバリュー(KV)キャッシュが必要である。
FastKVは、長いコンテキストシーケンスのレイテンシを高めるために設計されたKVキャッシュ圧縮方式である。
論文 参考訳(メタデータ) (2025-02-03T05:25:09Z) - ClusterKV: Manipulating LLM KV Cache in Semantic Space for Recallable Compression [10.003118268356017]
ロングコンテキストは推論効率に重大な課題をもたらす。
本稿では,意味クラスタの粒度でトークンをリコールするClusterKVを紹介する。
実験結果から、ClusterKVは32kのコンテキスト長を持つ様々なタスクにおいて、無視可能な精度の損失が得られることがわかった。
論文 参考訳(メタデータ) (2024-12-04T10:58:27Z) - KVSharer: Efficient Inference via Layer-Wise Dissimilar KV Cache Sharing [58.29726147780976]
我々は,層間をKVキャッシュで共有し,層間圧縮を実現する,textit KVSharerと呼ばれるプラグアンドプレイ方式を提案する。
実験の結果、textit KVSharerはKVキャッシュの計算を30%削減し、メモリ消費を削減できることがわかった。
我々は,textit KVSharerが既存の層内KVキャッシュ圧縮手法と互換性があることを検証する。
論文 参考訳(メタデータ) (2024-10-24T08:06:41Z) - Lossless KV Cache Compression to 2% [22.98828332096935]
この研究は、KVキャッシュを元のサイズの2%未満に圧縮することを目的とした、新しいアーキテクチャであるCLLA(Cross-Layer Latent Attention)を導入している。
CLLAは、アテンションヘッド/ディメンション低減、レイヤ共有、量子化技術を結合的なフレームワークに統合する。
論文 参考訳(メタデータ) (2024-10-20T02:17:35Z) - CSKV: Training-Efficient Channel Shrinking for KV Cache in Long-Context Scenarios [13.144156413032896]
KVキャッシュ圧縮のための訓練効率の高いチャネルシンキング技術であるCSKVを紹介する。
CSKVは、モデル長文機能を維持しながら、KVキャッシュのメモリオーバーヘッドを80%削減できることを示す。
我々の手法は量子化とシームレスに組み合わせることでメモリオーバーヘッドをさらに低減し、最大95%の圧縮比を達成することができる。
論文 参考訳(メタデータ) (2024-09-16T17:36:50Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - LoCoCo: Dropping In Convolutions for Long Context Compression [77.26610232994508]
本稿では,Long Context Compression(LoCoCo)のための新しいアプローチであるDropping In Convolutionsを提案する。
LoCoCoは、固定サイズキーバリュー(KV)キャッシュのみを使用し、推論と微調整の両方のステージで効率を向上させることができる。
論文 参考訳(メタデータ) (2024-06-08T01:35:11Z) - PyramidKV: Dynamic KV Cache Compression based on Pyramidal Information Funneling [53.08975547824068]
本研究では,大規模言語モデル(LLM)内の注意に基づく情報フローが,長期的文脈処理のための顕著なパターンによって集約されるかどうかを検討する。
観測の結果,LLMは下層に広く注意が散らばっているピラミッド情報ファンリングを通じて情報を集約することがわかった。
これらの知見に触発され、我々は新しい効率的なKVキャッシュ圧縮法であるPraamid KVを開発した。
論文 参考訳(メタデータ) (2024-06-04T07:51:30Z) - Model Tells You What to Discard: Adaptive KV Cache Compression for LLMs [82.08922896531618]
大規模言語モデル(LLM)における生成推論のメモリフットプリントを削減するプラグイン・アンド・プレイ方式である適応KVキャッシュ圧縮を導入する。
我々は,アテンションモジュールの本質的な構造を明らかにするために,ターゲットプロファイリングを行う。
認識された構造に基づいて、我々はKVキャッシュを適応的に構築する: 注意頭上の長距離コンテキストを排除し、局所的なコンテキストを強調し、特別なトークンを中心とした注意頭上の特別なトークンを排除し、すべてのトークンに広く参加する注目頭に対して標準のKVキャッシュのみを使用する。
論文 参考訳(メタデータ) (2023-10-03T05:17:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。