Beyond Self-Talk: A Communication-Centric Survey of LLM-Based Multi-Agent Systems
- URL: http://arxiv.org/abs/2502.14321v2
- Date: Thu, 19 Jun 2025 08:55:24 GMT
- Title: Beyond Self-Talk: A Communication-Centric Survey of LLM-Based Multi-Agent Systems
- Authors: Bingyu Yan, Zhibo Zhou, Litian Zhang, Lian Zhang, Ziyi Zhou, Dezhuang Miao, Zhoujun Li, Chaozhuo Li, Xiaoming Zhang,
- Abstract summary: Large language model-based multi-agent systems have recently gained significant attention due to their potential for complex, collaborative, and intelligent problem-solving capabilities.<n>Existing surveys typically categorize LLM-MAS according to their application domains or architectures, overlooking the central role of communication in coordinating agent behaviors and interactions.<n>This review aims to help researchers and practitioners gain a clear understanding of the communication mechanisms in LLM-MAS, thereby facilitating the design and deployment of robust, scalable, and secure multi-agent systems.
- Score: 23.379992200838053
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language model-based multi-agent systems have recently gained significant attention due to their potential for complex, collaborative, and intelligent problem-solving capabilities. Existing surveys typically categorize LLM-based multi-agent systems (LLM-MAS) according to their application domains or architectures, overlooking the central role of communication in coordinating agent behaviors and interactions. To address this gap, this paper presents a comprehensive survey of LLM-MAS from a communication-centric perspective. Specifically, we propose a structured framework that integrates system-level communication (architecture, goals, and protocols) with system internal communication (strategies, paradigms, objects, and content), enabling a detailed exploration of how agents interact, negotiate, and achieve collective intelligence. Through an extensive analysis of recent literature, we identify key components in multiple dimensions and summarize their strengths and limitations. In addition, we highlight current challenges, including communication efficiency, security vulnerabilities, inadequate benchmarking, and scalability issues, and outline promising future research directions. This review aims to help researchers and practitioners gain a clear understanding of the communication mechanisms in LLM-MAS, thereby facilitating the design and deployment of robust, scalable, and secure multi-agent systems.
Related papers
- AgentMaster: A Multi-Agent Conversational Framework Using A2A and MCP Protocols for Multimodal Information Retrieval and Analysis [0.0]
We present a pilot study of AgentMaster, a novel modular multi-protocol MAS framework with self-implemented A2A and MCP.<n>The system supports natural language interaction without prior technical expertise and responds to multimodal queries.<n>Overall, our proposed framework contributes to the potential capabilities of domain-specific, cooperative, and scalable conversational AI powered by MAS.
arXiv Detail & Related papers (2025-07-08T03:34:26Z) - From Standalone LLMs to Integrated Intelligence: A Survey of Compound Al Systems [6.284317913684068]
Compound Al Systems (CAIS) is an emerging paradigm that integrates large language models (LLMs) with external components, such as retrievers, agents, tools, and orchestrators.<n>Despite growing adoption in both academia and industry, the CAIS landscape remains fragmented, lacking a unified framework for analysis, taxonomy, and evaluation.<n>This survey aims to provide researchers and practitioners with a comprehensive foundation for understanding, developing, and advancing the next generation of system-level artificial intelligence.
arXiv Detail & Related papers (2025-06-05T02:34:43Z) - From Large AI Models to Agentic AI: A Tutorial on Future Intelligent Communications [57.38526350775472]
This tutorial provides a systematic introduction to the principles, design, and applications of Large Artificial Intelligence Models (LAMs) and Agentic AI technologies.<n>We outline the background of 6G communications, review the technological evolution from LAMs to Agentic AI, and clarify the tutorial's motivation and main contributions.
arXiv Detail & Related papers (2025-05-28T12:54:07Z) - Survey of LLM Agent Communication with MCP: A Software Design Pattern Centric Review [0.9208007322096533]
The study revisits well-established patterns, including Mediator, Observer, Publish-Subscribe, and Broker.<n>The article concludes by outlining open challenges, potential security risks, and promising directions for advancing robust, interoperable, and scalable multi-agent ecosystems.
arXiv Detail & Related papers (2025-05-26T09:11:17Z) - A Trustworthy Multi-LLM Network: Challenges,Solutions, and A Use Case [59.58213261128626]
We propose a blockchain-enabled collaborative framework that connects multiple Large Language Models (LLMs) into a Trustworthy Multi-LLM Network (MultiLLMN)<n>This architecture enables the cooperative evaluation and selection of the most reliable and high-quality responses to complex network optimization problems.
arXiv Detail & Related papers (2025-05-06T05:32:46Z) - LLM-Based Human-Agent Collaboration and Interaction Systems: A Survey [34.275920463375684]
Large language models (LLMs) have sparked growing interest in building fully autonomous agents.<n>LLM-HAS incorporate human-provided information, feedback, or control into the agent system to enhance system performance, reliability and safety.<n>This paper provides the first comprehensive and structured survey of LLM-HAS.
arXiv Detail & Related papers (2025-05-01T08:29:26Z) - A Desideratum for Conversational Agents: Capabilities, Challenges, and Future Directions [51.96890647837277]
Large Language Models (LLMs) have propelled conversational AI from traditional dialogue systems into sophisticated agents capable of autonomous actions, contextual awareness, and multi-turn interactions with users.
This survey paper presents a desideratum for next-generation Conversational Agents - what has been achieved, what challenges persist, and what must be done for more scalable systems that approach human-level intelligence.
arXiv Detail & Related papers (2025-04-07T21:01:25Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence.
This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy.
Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time.
arXiv Detail & Related papers (2025-03-27T12:50:17Z) - Towards Agentic Recommender Systems in the Era of Multimodal Large Language Models [75.4890331763196]
Recent breakthroughs in Large Language Models (LLMs) have led to the emergence of agentic AI systems.
LLM-based Agentic RS (LLM-ARS) can offer more interactive, context-aware, and proactive recommendations.
arXiv Detail & Related papers (2025-03-20T22:37:15Z) - Large Language Models for Multi-Robot Systems: A Survey [9.31855372655603]
Multi-Robot Systems (MRS) pose unique challenges, including coordination, scalability, and real-world adaptability.<n>This survey provides the first comprehensive exploration of Large Language Models (LLMs) integration into MRS.<n>We highlight key applications in diverse domains, such as household robotics, construction, formation control, target tracking, and robot games.
arXiv Detail & Related papers (2025-02-06T06:52:14Z) - Multi-Agent Collaboration Mechanisms: A Survey of LLMs [6.545098975181273]
Multi-Agent Systems (MASs) enable groups of intelligent agents to coordinate and solve complex tasks collectively.<n>This work provides an extensive survey of the collaborative aspect of MASs and introduces a framework to guide future research.
arXiv Detail & Related papers (2025-01-10T19:56:50Z) - Cooperate or Collapse: Emergence of Sustainable Cooperation in a Society of LLM Agents [101.17919953243107]
GovSim is a generative simulation platform designed to study strategic interactions and cooperative decision-making in large language models (LLMs)<n>We find that all but the most powerful LLM agents fail to achieve a sustainable equilibrium in GovSim, with the highest survival rate below 54%.<n>We show that agents that leverage "Universalization"-based reasoning, a theory of moral thinking, are able to achieve significantly better sustainability.
arXiv Detail & Related papers (2024-04-25T15:59:16Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScope is a developer-centric multi-agent platform with message exchange as its core communication mechanism.
The abundant syntactic tools, built-in agents and service functions, user-friendly interfaces for application demonstration and utility monitor, zero-code programming workstation, and automatic prompt tuning mechanism significantly lower the barriers to both development and deployment.
arXiv Detail & Related papers (2024-02-21T04:11:28Z) - LLM Multi-Agent Systems: Challenges and Open Problems [14.174833743880244]
This paper explores existing works of multi-agent systems and identifies challenges that remain inadequately addressed.
By leveraging the diverse capabilities and roles of individual agents within a multi-agent system, these systems can tackle complex tasks through collaboration.
We discuss optimizing task allocation, fostering robust reasoning through iterative debates, managing complex and layered context information, and enhancing memory management to support the intricate interactions within multi-agent systems.
arXiv Detail & Related papers (2024-02-05T23:06:42Z) - Exploring Large Language Model based Intelligent Agents: Definitions,
Methods, and Prospects [32.91556128291915]
This paper surveys current research to provide an in-depth overview of intelligent agents within single and multi-agent systems.
It covers their definitions, research frameworks, and foundational components such as their composition, cognitive and planning methods, tool utilization, and responses to environmental feedback.
We conclude by envisioning prospects for LLM-based agents, considering the evolving landscape of AI and natural language processing.
arXiv Detail & Related papers (2024-01-07T09:08:24Z) - Large Language Model Enhanced Multi-Agent Systems for 6G Communications [94.45712802626794]
We propose a multi-agent system with customized communication knowledge and tools for solving communication related tasks using natural language.
We validate the effectiveness of the proposed multi-agent system by designing a semantic communication system.
arXiv Detail & Related papers (2023-12-13T02:35:57Z) - Cooperation, Competition, and Maliciousness: LLM-Stakeholders Interactive Negotiation [52.930183136111864]
We propose using scorable negotiation to evaluate Large Language Models (LLMs)
To reach an agreement, agents must have strong arithmetic, inference, exploration, and planning capabilities.
We provide procedures to create new games and increase games' difficulty to have an evolving benchmark.
arXiv Detail & Related papers (2023-09-29T13:33:06Z) - Building Cooperative Embodied Agents Modularly with Large Language
Models [104.57849816689559]
We address challenging multi-agent cooperation problems with decentralized control, raw sensory observations, costly communication, and multi-objective tasks instantiated in various embodied environments.
We harness the commonsense knowledge, reasoning ability, language comprehension, and text generation prowess of LLMs and seamlessly incorporate them into a cognitive-inspired modular framework.
Our experiments on C-WAH and TDW-MAT demonstrate that CoELA driven by GPT-4 can surpass strong planning-based methods and exhibit emergent effective communication.
arXiv Detail & Related papers (2023-07-05T17:59:27Z) - Multi-Agent Collaboration: Harnessing the Power of Intelligent LLM
Agents [0.0]
We present a novel framework for enhancing the capabilities of large language models (LLMs) by leveraging the power of multi-agent systems.
Our framework introduces a collaborative environment where multiple intelligent agent components, each with distinctive attributes and roles, work together to handle complex tasks more efficiently and effectively.
arXiv Detail & Related papers (2023-06-05T23:55:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.