SR-LLM: Rethinking the Structured Representation in Large Language Model
- URL: http://arxiv.org/abs/2502.14352v1
- Date: Thu, 20 Feb 2025 08:17:56 GMT
- Title: SR-LLM: Rethinking the Structured Representation in Large Language Model
- Authors: Jiahuan Zhang, Tianheng Wang, Hanqing Wu, Ziyi Huang, Yulong Wu, Dongbai Chen, Linfeng Song, Yue Zhang, Guozheng Rao, Kaicheng Yu,
- Abstract summary: We propose SR-LLM to explore a superior way of integrating structured representation with Large Language Models.<n>Performance improvements were observed in widely downstream datasets, with particularly notable gains of 3.17% and 12.38% in PAWS.
- Score: 25.876300810298797
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Structured representations, exemplified by Abstract Meaning Representation (AMR), have long been pivotal in computational linguistics. However, their role remains ambiguous in the Large Language Models (LLMs) era. Initial attempts to integrate structured representation into LLMs via a zero-shot setting yielded inferior performance. We hypothesize that such a decline stems from the structure information being passed into LLMs in a code format unfamiliar to LLMs' training corpora. Consequently, we propose SR-LLM, an innovative framework with two settings to explore a superior way of integrating structured representation with LLMs from training-free and training-dependent perspectives. The former integrates structural information through natural language descriptions in LLM prompts, whereas its counterpart augments the model's inference capability through fine-tuning on linguistically described structured representations. Performance improvements were observed in widely downstream datasets, with particularly notable gains of 3.17% and 12.38% in PAWS. To the best of our knowledge, this work represents the pioneering demonstration that leveraging structural representations can substantially enhance LLMs' inference capability. We hope that our work sheds light and encourages future research to enhance the reasoning and interoperability of LLMs by structure data.
Related papers
- SAFT: Structure-Aware Fine-Tuning of LLMs for AMR-to-Text Generation [50.277959544420455]
SAFT is a structure-aware fine-tuning approach that injects graph topology into pretrained language models.<n>We compute direction-sensitive positional encodings from the magnetic Laplacian of transformed AMRs.<n> SAFT sets a new state-of-the-art on AMR 3.0 with a 3.5 BLEU improvement over baselines.
arXiv Detail & Related papers (2025-07-15T18:12:57Z) - Large Language Models are Good Relational Learners [55.40941576497973]
We introduce Rel-LLM, a novel architecture that utilizes a graph neural network (GNN)- based encoder to generate structured relational prompts for large language models (LLMs)<n>Unlike traditional text-based serialization approaches, our method preserves the inherent relational structure of databases while enabling LLMs to process and reason over complex entity relationships.
arXiv Detail & Related papers (2025-06-06T04:07:55Z) - Can LLMs Interpret and Leverage Structured Linguistic Representations? A Case Study with AMRs [10.808201018448274]
This paper evaluates the ability of Large Language Models (LLMs) to leverage contextual information in the form of structured linguistic representations.
We examine the impact of encoding both short and long contexts using Abstract Meaning Representation (AMR) structures across a diverse set of language tasks.
arXiv Detail & Related papers (2025-04-07T05:38:40Z) - Thinking with Knowledge Graphs: Enhancing LLM Reasoning Through Structured Data [0.9284740716447338]
Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language understanding and generation.<n>Recent research has shown promising results in leveraging knowledge graphs (KGs) to enhance LLM performance.<n>We have developed different techniques that tightly integrate KG structures and semantics into LLM representations.
arXiv Detail & Related papers (2024-12-14T02:51:47Z) - LLaVA-KD: A Framework of Distilling Multimodal Large Language Models [72.68665884790002]
We propose a novel framework to transfer knowledge from l-MLLMs to s-MLLMs.<n>We introduce Multimodal Distillation (MDist) to transfer teacher model's robust representations across both visual and linguistic modalities.<n>We also propose a three-stage training scheme to fully exploit the potential of the proposed distillation strategy.
arXiv Detail & Related papers (2024-10-21T17:41:28Z) - Rethinking Semantic Parsing for Large Language Models: Enhancing LLM Performance with Semantic Hints [20.844061807562436]
We propose SENSE, a novel prompting approach that embeds semantic hints within the prompt.
Experiments show that SENSE consistently improves LLMs' performance across various tasks.
arXiv Detail & Related papers (2024-09-22T14:35:09Z) - DaRec: A Disentangled Alignment Framework for Large Language Model and Recommender System [83.34921966305804]
Large language models (LLMs) have demonstrated remarkable performance in recommender systems.<n>We propose a novel plug-and-play alignment framework for LLMs and collaborative models.<n>Our method is superior to existing state-of-the-art algorithms.
arXiv Detail & Related papers (2024-08-15T15:56:23Z) - Enhancing LLM's Cognition via Structurization [41.13997892843677]
Large language models (LLMs) process input contexts through a causal and sequential perspective.
This paper presents a novel concept of context structurization.
Specifically, we transform the plain, unordered contextual sentences into well-ordered and hierarchically structurized elements.
arXiv Detail & Related papers (2024-07-23T12:33:58Z) - Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL [78.80673954827773]
Large Language Models (LLMs) play a crucial role in capturing structured semantics to enhance language understanding, improve interpretability, and reduce bias.
We propose using Semantic Role Labeling (SRL) as a fundamental task to explore LLMs' ability to extract structured semantics.
We find interesting potential: LLMs can indeed capture semantic structures, and scaling-up doesn't always mirror potential.
We are surprised to discover that significant overlap in the errors is made by both LLMs and untrained humans, accounting for almost 30% of all errors.
arXiv Detail & Related papers (2024-05-10T11:44:05Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Large Language Models can Contrastively Refine their Generation for Better Sentence Representation Learning [57.74233319453229]
Large language models (LLMs) have emerged as a groundbreaking technology and their unparalleled text generation capabilities have sparked interest in their application to the fundamental sentence representation learning task.
We propose MultiCSR, a multi-level contrastive sentence representation learning framework that decomposes the process of prompting LLMs to generate a corpus.
Our experiments reveal that MultiCSR enables a less advanced LLM to surpass the performance of ChatGPT, while applying it to ChatGPT achieves better state-of-the-art results.
arXiv Detail & Related papers (2023-10-17T03:21:43Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Prompting Large Language Models for Counterfactual Generation: An
Empirical Study [13.506528217009507]
Large language models (LLMs) have made remarkable progress in a wide range of natural language understanding and generation tasks.
We present a comprehensive evaluation framework on various types of NLU tasks, which covers all key factors in determining LLMs' capability of generating counterfactuals.
arXiv Detail & Related papers (2023-05-24T06:44:32Z) - Structure-CLIP: Towards Scene Graph Knowledge to Enhance Multi-modal
Structured Representations [70.41385310930846]
We present an end-to-end framework Structure-CLIP to enhance multi-modal structured representations.
We use scene graphs to guide the construction of semantic negative examples, which results in an increased emphasis on learning structured representations.
A Knowledge-Enhance (KEE) is proposed to leverage SGK as input to further enhance structured representations.
arXiv Detail & Related papers (2023-05-06T03:57:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.