Can LLMs Interpret and Leverage Structured Linguistic Representations? A Case Study with AMRs
- URL: http://arxiv.org/abs/2504.04745v1
- Date: Mon, 07 Apr 2025 05:38:40 GMT
- Title: Can LLMs Interpret and Leverage Structured Linguistic Representations? A Case Study with AMRs
- Authors: Ankush Raut, Xiaofeng Zhu, Maria Leonor Pacheco,
- Abstract summary: This paper evaluates the ability of Large Language Models (LLMs) to leverage contextual information in the form of structured linguistic representations.<n>We examine the impact of encoding both short and long contexts using Abstract Meaning Representation (AMR) structures across a diverse set of language tasks.
- Score: 10.808201018448274
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper evaluates the ability of Large Language Models (LLMs) to leverage contextual information in the form of structured linguistic representations. Specifically, we examine the impact of encoding both short and long contexts using Abstract Meaning Representation (AMR) structures across a diverse set of language tasks. We perform our analysis using 8-bit quantized and instruction-tuned versions of Llama 3.1 (8B), Phi-3, and Mistral 7B. Our results indicate that, for tasks involving short contexts, augmenting the prompt with the AMR of the original language context often degrades the performance of the underlying LLM. However, for tasks that involve long contexts, such as dialogue summarization in the SAMSum dataset, this enhancement improves LLM performance, for example, by increasing the zero-shot cosine similarity score of Llama 3.1 from 66.2% to 76%. This improvement is more evident in the newer and larger LLMs, but does not extend to the older or smaller ones. In addition, we observe that LLMs can effectively reconstruct the original text from a linearized AMR, achieving a cosine similarity of 81.3% in the best-case scenario.
Related papers
- SAFT: Structure-Aware Fine-Tuning of LLMs for AMR-to-Text Generation [50.277959544420455]
SAFT is a structure-aware fine-tuning approach that injects graph topology into pretrained language models.<n>We compute direction-sensitive positional encodings from the magnetic Laplacian of transformed AMRs.<n> SAFT sets a new state-of-the-art on AMR 3.0 with a 3.5 BLEU improvement over baselines.
arXiv Detail & Related papers (2025-07-15T18:12:57Z) - NL in the Middle: Code Translation with LLMs and Intermediate Representations [66.41928783565795]
Large language models (LLMs) produce buggy code translations.<n>We consider whether code translation using LLMs can benefit from intermediate representations via natural language (NL) and abstract syntax trees (ASTs)
arXiv Detail & Related papers (2025-07-11T14:29:21Z) - SR-LLM: Rethinking the Structured Representation in Large Language Model [25.876300810298797]
We propose SR-LLM to explore a superior way of integrating structured representation with Large Language Models.<n>Performance improvements were observed in widely downstream datasets, with particularly notable gains of 3.17% and 12.38% in PAWS.
arXiv Detail & Related papers (2025-02-20T08:17:56Z) - Rethinking Semantic Parsing for Large Language Models: Enhancing LLM Performance with Semantic Hints [20.844061807562436]
We propose SENSE, a novel prompting approach that embeds semantic hints within the prompt.
Experiments show that SENSE consistently improves LLMs' performance across various tasks.
arXiv Detail & Related papers (2024-09-22T14:35:09Z) - Enhancing LLM's Cognition via Structurization [41.13997892843677]
Large language models (LLMs) process input contexts through a causal and sequential perspective.
This paper presents a novel concept of context structurization.
Specifically, we transform the plain, unordered contextual sentences into well-ordered and hierarchically structurized elements.
arXiv Detail & Related papers (2024-07-23T12:33:58Z) - Assessing LLMs for Zero-shot Abstractive Summarization Through the Lens of Relevance Paraphrasing [37.400757839157116]
Large Language Models (LLMs) have achieved state-of-the-art performance at zero-shot generation of abstractive summaries for given articles.
We propose relevance paraphrasing, a simple strategy that can be used to measure the robustness of LLMs as summarizers.
arXiv Detail & Related papers (2024-06-06T12:08:43Z) - Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL [78.80673954827773]
Large Language Models (LLMs) play a crucial role in capturing structured semantics to enhance language understanding, improve interpretability, and reduce bias.
We propose using Semantic Role Labeling (SRL) as a fundamental task to explore LLMs' ability to extract structured semantics.
We find interesting potential: LLMs can indeed capture semantic structures, and scaling-up doesn't always mirror potential.
We are surprised to discover that significant overlap in the errors is made by both LLMs and untrained humans, accounting for almost 30% of all errors.
arXiv Detail & Related papers (2024-05-10T11:44:05Z) - Analyzing the Role of Semantic Representations in the Era of Large Language Models [104.18157036880287]
We investigate the role of semantic representations in the era of large language models (LLMs)
We propose an AMR-driven chain-of-thought prompting method, which we call AMRCoT.
We find that it is difficult to predict which input examples AMR may help or hurt on, but errors tend to arise with multi-word expressions.
arXiv Detail & Related papers (2024-05-02T17:32:59Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
We propose an information refinement training method named InFO-RAG.
InFO-RAG is low-cost and general across various tasks.
It improves the performance of LLaMA2 by an average of 9.39% relative points.
arXiv Detail & Related papers (2024-02-28T08:24:38Z) - Learning to Reduce: Optimal Representations of Structured Data in
Prompting Large Language Models [42.16047343029512]
Large Language Models (LLMs) have been widely used as general-purpose AI agents.
We propose a framework, Learning to Reduce, that fine-tunes a language model to generate a reduced version of an input context.
We show that our model achieves comparable accuracies in selecting the relevant evidence from an input context.
arXiv Detail & Related papers (2024-02-22T00:41:23Z) - AlignedCoT: Prompting Large Language Models via Native-Speaking Demonstrations [52.43593893122206]
Alignedcot is an in-context learning technique for invoking Large Language Models.
It achieves consistent and correct step-wise prompts in zero-shot scenarios.
We conduct experiments on mathematical reasoning and commonsense reasoning.
arXiv Detail & Related papers (2023-11-22T17:24:21Z) - Improving Translation Faithfulness of Large Language Models via
Augmenting Instructions [89.76691340615848]
We propose SWIE (Segment-Weighted Instruction Embedding) and an instruction-following dataset OVERMISS.
SWIE improves the model instruction understanding by adding a global instruction representation on the following input and response representations.
OVERMISS improves model faithfulness by comparing over-translation and miss-translation results with the correct translation.
arXiv Detail & Related papers (2023-08-24T09:32:29Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
This paper investigates the capabilities of large language models (LLMs) in performing various sentiment analysis tasks.
We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets.
arXiv Detail & Related papers (2023-05-24T10:45:25Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
In recent years, pre-trained large language models (LLMs) have demonstrated remarkable efficiency in achieving an inference-time few-shot learning capability known as in-context learning.
This study aims to examine the in-context learning phenomenon through a Bayesian lens, viewing real-world LLMs as latent variable models.
arXiv Detail & Related papers (2023-01-27T18:59:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.