Quantum enhanced Monte Carlo simulation for photon interaction cross sections
- URL: http://arxiv.org/abs/2502.14374v1
- Date: Thu, 20 Feb 2025 09:05:37 GMT
- Title: Quantum enhanced Monte Carlo simulation for photon interaction cross sections
- Authors: Euimin Lee, Sangmin Lee, Shiho Kim,
- Abstract summary: High-energy physics simulations traditionally rely on classical Monte Carlo methods to model complex particle interactions.
We introduce a novel quantum-enhanced simulation framework that integrates discrete-time quantum walks with quantum amplitude estimation.
- Score: 4.764631050395652
- License:
- Abstract: High-energy physics simulations traditionally rely on classical Monte Carlo methods to model complex particle interactions, often incurring significant computational costs. In this paper, we introduce a novel quantum-enhanced simulation framework that integrates discrete-time quantum walks with quantum amplitude estimation to model photon interaction cross sections. By mapping the probabilistic transport process of 10 MeV photons in a water medium onto a quantum circuit and focusing on Compton scattering as the dominant attenuation mechanism, we demonstrate that our approach reproduces classical probability distributions with high fidelity. Simulation results obtained via the IBM Qiskit quantum simulator reveal a quadratic speedup in amplitude estimation compared to conventional Monte Carlo methods. Our framework not only validates the feasibility of employing quantum algorithms for high-energy physics simulations but also offers a scalable pathway toward incorporating multiple interaction channels and secondary particle production. These findings underscore the potential of quantum-enhanced methods to overcome the computational bottlenecks inherent in large-scale particle physics simulations.
Related papers
- Quantum Simulation for Dynamical Transition Rates in Open Quantum Systems [0.0]
We introduce a novel and efficient quantum simulation method to compute dynamical transition rates in Markovian open quantum systems.
Our new approach holds the potential to surpass the bottlenecks of current quantum chemical research.
arXiv Detail & Related papers (2024-12-23T02:53:05Z) - Quantum Dynamical Hamiltonian Monte Carlo [0.0]
A ubiquitous problem in machine learning is sampling from probability distributions that we only have access to via their log probability.
We extend the well-known Hamiltonian Monte Carlo (HMC) method for Chain Monte Carlo (MCMC) sampling to leverage quantum computation in a hybrid manner.
arXiv Detail & Related papers (2024-03-04T07:08:23Z) - Variational quantum simulation using non-Gaussian continuous-variable
systems [39.58317527488534]
We present a continuous-variable variational quantum eigensolver compatible with state-of-the-art photonic technology.
The framework we introduce allows us to compare discrete and continuous variable systems without introducing a truncation of the Hilbert space.
arXiv Detail & Related papers (2023-10-24T15:20:07Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Quantum simulation of weak-field light-matter interactions [0.0]
Simulation of the interaction of light with matter, including at the few-photon level, is important for understanding the optical and optoelectronic properties of materials.
We develop a quantum simulation framework for simulating such light-matter interactions on platforms with controllable bosonic degrees of freedom.
arXiv Detail & Related papers (2021-12-14T05:48:24Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Efficient simulation of ultrafast quantum nonlinear optics with matrix
product states [0.0]
We develop an algorithm to unravel the MPS quantum state into constituent temporal supermodes.
We observe the development of non-classical Wigner-function negativity in the solitonic mode and quantum corrections to the semiclassical dynamics of the pulse.
arXiv Detail & Related papers (2021-02-11T09:15:24Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.