Auto-Bench: An Automated Benchmark for Scientific Discovery in LLMs
- URL: http://arxiv.org/abs/2502.15224v1
- Date: Fri, 21 Feb 2025 05:35:20 GMT
- Title: Auto-Bench: An Automated Benchmark for Scientific Discovery in LLMs
- Authors: Tingting Chen, Srinivas Anumasa, Beibei Lin, Vedant Shah, Anirudh Goyal, Dianbo Liu,
- Abstract summary: We introduce a novel benchmark to evaluate Large Language Models (LLMs) for scientific discovery in both natural and social sciences.<n>Our benchmark is based on the principles of causal graph discovery. It challenges models to uncover hidden structures and make optimal decisions, which includes generating valid justifications.<n>We evaluate state-of-the-art LLMs, including GPT-4, Gemini, Qwen, Claude, and Llama, and observe a significant performance drop as the problem complexity increases.
- Score: 23.608962459019278
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given the remarkable performance of Large Language Models (LLMs), an important question arises: Can LLMs conduct human-like scientific research and discover new knowledge, and act as an AI scientist? Scientific discovery is an iterative process that demands efficient knowledge updating and encoding. It involves understanding the environment, identifying new hypotheses, and reasoning about actions; however, no standardized benchmark specifically designed for scientific discovery exists for LLM agents. In response to these limitations, we introduce a novel benchmark, \textit{Auto-Bench}, that encompasses necessary aspects to evaluate LLMs for scientific discovery in both natural and social sciences. Our benchmark is based on the principles of causal graph discovery. It challenges models to uncover hidden structures and make optimal decisions, which includes generating valid justifications. By engaging interactively with an oracle, the models iteratively refine their understanding of underlying interactions, the chemistry and social interactions, through strategic interventions. We evaluate state-of-the-art LLMs, including GPT-4, Gemini, Qwen, Claude, and Llama, and observe a significant performance drop as the problem complexity increases, which suggests an important gap between machine and human intelligence that future development of LLMs need to take into consideration.
Related papers
- LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models [20.800445482814958]
Large Language Models (LLMs) have gained interest for their potential to leverage embedded scientific knowledge for hypothesis generation.
Existing benchmarks often rely on common equations that are susceptible to memorization by LLMs, leading to inflated performance metrics that do not reflect discovery.
In this paper, we introduce LLM-SRBench, a comprehensive benchmark with 239 challenging problems across four scientific domains.
Our benchmark comprises two main categories: LSR-Transform, which transforms common physical models into less common mathematical representations to test reasoning beyond memorized forms, and LSR- Synth, which introduces synthetic, discovery-driven problems requiring data-driven reasoning
arXiv Detail & Related papers (2025-04-14T17:00:13Z) - ResearchBench: Benchmarking LLMs in Scientific Discovery via Inspiration-Based Task Decomposition [67.26124739345332]
Large language models (LLMs) have demonstrated potential in assisting scientific research, yet their ability to discover high-quality research hypotheses remains unexamined.
We introduce the first large-scale benchmark for evaluating LLMs with a near-sufficient set of sub-tasks of scientific discovery.
We develop an automated framework that extracts critical components - research questions, background surveys, inspirations, and hypotheses - from scientific papers.
arXiv Detail & Related papers (2025-03-27T08:09:15Z) - A Survey on Post-training of Large Language Models [185.51013463503946]
Large Language Models (LLMs) have fundamentally transformed natural language processing, making them indispensable across domains ranging from conversational systems to scientific exploration.
These challenges necessitate advanced post-training language models (PoLMs) to address shortcomings, such as restricted reasoning capacities, ethical uncertainties, and suboptimal domain-specific performance.
This paper presents the first comprehensive survey of PoLMs, systematically tracing their evolution across five core paradigms.
arXiv Detail & Related papers (2025-03-08T05:41:42Z) - Large Language Models Think Too Fast To Explore Effectively [0.0]
The extent to which Large Language Models can effectively explore, particularly in open-ended tasks, remains unclear.<n>This study investigates whether LLMs can surpass humans in exploration during an open-ended task, using Little Alchemy 2 as a paradigm.
arXiv Detail & Related papers (2025-01-29T21:51:17Z) - Improving Scientific Hypothesis Generation with Knowledge Grounded Large Language Models [20.648157071328807]
Large language models (LLMs) can identify novel research directions by analyzing existing knowledge.
LLMs are prone to generating hallucinations'', outputs that are plausible-sounding but factually incorrect.
We propose KG-CoI, a system that enhances LLM hypothesis generation by integrating external, structured knowledge from knowledge graphs.
arXiv Detail & Related papers (2024-11-04T18:50:00Z) - GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning method that merges parametric and non-parametric memories to improve accurate reasoning with minimal external input.<n>GIVE guides the LLM agent to select the most pertinent expert data (observe), engage in query-specific divergent thinking (reflect), and then synthesize this information to produce the final output (speak)
arXiv Detail & Related papers (2024-10-11T03:05:06Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - SciKnowEval: Evaluating Multi-level Scientific Knowledge of Large Language Models [35.98892300665275]
We introduce the SciKnowEval benchmark, a framework that evaluates large language models (LLMs) across five progressive levels of scientific knowledge.
These levels aim to assess the breadth and depth of scientific knowledge in LLMs, including memory, comprehension, reasoning, discernment, and application.
We benchmark 26 advanced open-source and proprietary LLMs using zero-shot and few-shot prompting strategies.
arXiv Detail & Related papers (2024-06-13T13:27:52Z) - ALCM: Autonomous LLM-Augmented Causal Discovery Framework [2.1470800327528843]
We introduce a new framework, named Autonomous LLM-Augmented Causal Discovery Framework (ALCM), to synergize data-driven causal discovery algorithms and Large Language Models.
The ALCM consists of three integral components: causal structure learning, causal wrapper, and LLM-driven causal refiner.
We evaluate the ALCM framework by implementing two demonstrations on seven well-known datasets.
arXiv Detail & Related papers (2024-05-02T21:27:45Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
This paper introduces a novel collaborative approach, namely SlimPLM, that detects missing knowledge in large language models (LLMs) with a slim proxy model.
We employ a proxy model which has far fewer parameters, and take its answers as answers.
Heuristic answers are then utilized to predict the knowledge required to answer the user question, as well as the known and unknown knowledge within the LLM.
arXiv Detail & Related papers (2024-02-19T11:11:08Z) - Discovery of the Hidden World with Large Language Models [95.58823685009727]
This paper presents Causal representatiOn AssistanT (COAT) that introduces large language models (LLMs) to bridge the gap.
LLMs are trained on massive observations of the world and have demonstrated great capability in extracting key information from unstructured data.
COAT also adopts CDs to find causal relations among the identified variables as well as to provide feedback to LLMs to iteratively refine the proposed factors.
arXiv Detail & Related papers (2024-02-06T12:18:54Z) - SciInstruct: a Self-Reflective Instruction Annotated Dataset for Training Scientific Language Models [57.96527452844273]
We introduce SciInstruct, a suite of scientific instructions for training scientific language models capable of college-level scientific reasoning.
We curated a diverse and high-quality dataset encompassing physics, chemistry, math, and formal proofs.
To verify the effectiveness of SciInstruct, we fine-tuned different language models with SciInstruct, i.e., ChatGLM3 (6B and 32B), Llama3-8B-Instruct, and Mistral-7B: MetaMath.
arXiv Detail & Related papers (2024-01-15T20:22:21Z) - SciBench: Evaluating College-Level Scientific Problem-Solving Abilities of Large Language Models [70.5763210869525]
We introduce an expansive benchmark suite SciBench for Large Language Model (LLM)
SciBench contains a dataset featuring a range of collegiate-level scientific problems from mathematics, chemistry, and physics domains.
The results reveal that the current LLMs fall short of delivering satisfactory performance, with the best overall score of merely 43.22%.
arXiv Detail & Related papers (2023-07-20T07:01:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.