論文の概要: From Documents to Dialogue: Building KG-RAG Enhanced AI Assistants
- arxiv url: http://arxiv.org/abs/2502.15237v1
- Date: Fri, 21 Feb 2025 06:22:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 16:09:14.113920
- Title: From Documents to Dialogue: Building KG-RAG Enhanced AI Assistants
- Title(参考訳): ドキュメントから対話へ:KG-RAG強化AIアシスタントの構築
- Authors: Manisha Mukherjee, Sungchul Kim, Xiang Chen, Dan Luo, Tong Yu, Tung Mai,
- Abstract要約: 我々は、知識グラフ(KG)を利用した検索型拡張生成(RAG)フレームワークを使用して、外部知識ソースから関連情報を検索する。
我々のKG-RAGシステムは、応答を生成するLLMに送信される前に、ユーザのコンテキストに付加された関連する前兆を検索する。
評価の結果,本手法は応答関連性を大幅に向上させ,無関係な回答を50%以上削減し,既存の生産システムと比較して88%以上,完全関連性のある回答を増大させることがわかった。
- 参考スコア(独自算出の注目度): 28.149173430599525
- License:
- Abstract: The Adobe Experience Platform AI Assistant is a conversational tool that enables organizations to interact seamlessly with proprietary enterprise data through a chatbot. However, due to access restrictions, Large Language Models (LLMs) cannot retrieve these internal documents, limiting their ability to generate accurate zero-shot responses. To overcome this limitation, we use a Retrieval-Augmented Generation (RAG) framework powered by a Knowledge Graph (KG) to retrieve relevant information from external knowledge sources, enabling LLMs to answer questions over private or previously unseen document collections. In this paper, we propose a novel approach for building a high-quality, low-noise KG. We apply several techniques, including incremental entity resolution using seed concepts, similarity-based filtering to deduplicate entries, assigning confidence scores to entity-relation pairs to filter for high-confidence pairs, and linking facts to source documents for provenance. Our KG-RAG system retrieves relevant tuples, which are added to the user prompts context before being sent to the LLM generating the response. Our evaluation demonstrates that this approach significantly enhances response relevance, reducing irrelevant answers by over 50% and increasing fully relevant answers by 88% compared to the existing production system.
- Abstract(参考訳): Adobe Experience Platform AI Assistantは、チャットボットを通じて、企業がプロプライエタリなエンタープライズデータとシームレスに対話できる対話ツールである。
しかし、アクセス制限のため、LLM(Large Language Models)はこれらの内部文書を取得できず、正確なゼロショット応答を生成する能力を制限する。
この制限を克服するために、我々は、知識グラフ(KG)を利用した検索型拡張生成(RAG)フレームワークを使用して、外部の知識ソースから関連情報を検索し、LLMがプライベートまたは未確認の文書コレクション上の質問に答えることを可能にする。
本稿では,高品質で低雑音なKGを構築するための新しい手法を提案する。
本稿では、シード概念を用いたインクリメンタルエンティティ解決、類似度に基づくフィルタリングによるエントリの非重複化、エンティティ-リレーションペア間の信頼度スコアの割り当て、高信頼ペアのフィルタリング、出典文書への事実のリンクなど、いくつかの手法を適用する。
我々のKG-RAGシステムは関連するタプルを検索し、そのタプルをユーザに追加して、応答を生成するLLMに送信する前に、コンテキストをプロンプトする。
評価の結果,本手法は応答関連性を大幅に向上させ,無関係な回答を50%以上削減し,既存の生産システムと比較して88%以上,完全関連性のある回答を増大させることがわかった。
関連論文リスト
- Oreo: A Plug-in Context Reconstructor to Enhance Retrieval-Augmented Generation [28.568010424711563]
大規模言語モデル(LLM)は、パラメトリックな知識が限られ、ドメイン固有の専門知識が欠如しているため、幻覚に弱いままである。
Retrieval-Augmented Generation (RAG)は、LLMの知識基盤を強化するために外部文書検索を組み込むことによって、この問題に対処する。
発電機に供給する前に外部の知識ソースを洗練するためのコンパクトで効率的でプラガブルなモジュールを導入する。
論文 参考訳(メタデータ) (2025-02-18T16:38:39Z) - QuIM-RAG: Advancing Retrieval-Augmented Generation with Inverted Question Matching for Enhanced QA Performance [1.433758865948252]
本研究では,RAG(Retrieval-Augmented Generation)システム構築のための新しいアーキテクチャを提案する。
RAGアーキテクチャは、ターゲット文書から応答を生成するために構築される。
本稿では,本システムにおける検索機構の新しいアプローチQuIM-RAGを紹介する。
論文 参考訳(メタデータ) (2025-01-06T01:07:59Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
本稿では,KG(Amar)フレームワーク上での適応型マルチアスペクト検索手法を提案する。
この方法は、エンティティ、リレーション、サブグラフを含む知識を検索し、検索した各テキストを即時埋め込みに変換する。
提案手法は2つの共通データセットに対して最先端の性能を達成した。
論文 参考訳(メタデータ) (2024-12-24T16:38:04Z) - BRIEF: Bridging Retrieval and Inference for Multi-hop Reasoning via Compression [91.23933111083389]
Retrieval-augmented Generation (RAG)は、外部知識を統合することで、大きな言語モデル(LLM)を補完することができる。
本稿では,クエリ対応マルチホップ推論を行う軽量なアプローチであるBRIEFを提案する。
オープンソースモデルで構築した合成データに基づいて,BRIEFはより簡潔な要約を生成する。
論文 参考訳(メタデータ) (2024-10-20T04:24:16Z) - CuriousLLM: Elevating Multi-Document Question Answering with LLM-Enhanced Knowledge Graph Reasoning [0.9295048974480845]
我々は、好奇心駆動推論機構をLLMエージェントに統合する拡張であるCuriousLLMを提案する。
この機構により、エージェントは関連するフォローアップ質問を生成し、情報検索プロセスをより効率的に導くことができる。
実験の結果,CuriousLLMは多文書質問応答(MD-QA)におけるLLM性能を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2024-04-13T20:43:46Z) - REAR: A Relevance-Aware Retrieval-Augmented Framework for Open-Domain Question Answering [115.72130322143275]
REAR(Relevance-Aware Retrieval-augmented approach for open-domain Question answering, QA)
我々は,特殊な設計のアセスメントモジュールを組み込むことで,LLMベースのRAGシステムのための新しいアーキテクチャを開発する。
オープンドメインの4つのQAタスクの実験では、REARは以前の競争力のあるRAGアプローチよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-02-27T13:22:51Z) - Corrective Retrieval Augmented Generation [36.04062963574603]
Retrieval-augmented Generation (RAG) は、検索された文書の関連性に大きく依存しており、検索が失敗した場合のモデルがどのように振る舞うかについての懸念を提起する。
生成の堅牢性を改善するために,CRAG(Corrective Retrieval Augmented Generation)を提案する。
CRAGはプラグアンドプレイであり、様々なRAGベースのアプローチとシームレスに結合できる。
論文 参考訳(メタデータ) (2024-01-29T04:36:39Z) - Context Matters: Pushing the Boundaries of Open-Ended Answer Generation with Graph-Structured Knowledge Context [4.1229332722825]
本稿では,知識グラフに基づく拡張と合わせて,グラフ駆動型コンテキスト検索を組み合わせた新しいフレームワークを提案する。
我々は,様々なパラメータサイズを持つ大規模言語モデル(LLM)の実験を行い,知識の基盤化能力を評価し,オープンな質問に対する回答の事実的正確性を決定する。
われわれの方法であるGraphContextGenは、テキストベースの検索システムよりも一貫して優れており、その堅牢性と多くのユースケースへの適応性を実証している。
論文 参考訳(メタデータ) (2024-01-23T11:25:34Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
大きな言語モデル(LLM)は印象的な生成能力を示すが、内部知識に依存すると幻覚に悩まされる。
検索拡張LDMは、外部知識においてLLMを基盤とする潜在的な解決策として出現している。
論文 参考訳(メタデータ) (2023-10-31T04:37:57Z) - Generate rather than Retrieve: Large Language Models are Strong Context
Generators [74.87021992611672]
本稿では,文書検索を大規模言語モデル生成器に置き換えることで,知識集約型タスクを解く新しい視点を提案する。
我々は,提案手法をgenRead (genRead) と呼び,まず大きな言語モデルに対して,与えられた質問に基づいて文脈文書を生成し,次に生成された文書を読み出して最終回答を生成する。
論文 参考訳(メタデータ) (2022-09-21T01:30:59Z) - BertNet: Harvesting Knowledge Graphs with Arbitrary Relations from
Pretrained Language Models [65.51390418485207]
本稿では,事前学習したLMから任意の関係を持つ大規模KGを抽出する手法を提案する。
関係定義の最小限の入力により、アプローチは膨大な実体対空間を効率的に探索し、多様な正確な知識を抽出する。
我々は、異なるLMから400以上の新しい関係を持つKGを収穫するためのアプローチを展開している。
論文 参考訳(メタデータ) (2022-06-28T19:46:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。