論文の概要: Round Attention: A Novel Round-Level Attention Mechanism to Accelerate LLM Inference
- arxiv url: http://arxiv.org/abs/2502.15294v1
- Date: Fri, 21 Feb 2025 08:40:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 16:11:10.392822
- Title: Round Attention: A Novel Round-Level Attention Mechanism to Accelerate LLM Inference
- Title(参考訳): ラウンドアテンション: LLM推論を高速化する新しいラウンドレベルアテンションメカニズム
- Authors: Yaohua Tang, Zhicheng Hu, Kun Cheng, Fan Mo, Qiheng Lv, Hua Wang, Zhi Chen,
- Abstract要約: 会話ラウンドが続くにつれて、大量のKVキャッシュをGPUメモリに格納する必要がある。
我々は,最も関連性の高いラウンドのKVキャッシュをリコールし,計算するラウンドアテンション機構であるラウンドアテンションを提案する。
- 参考スコア(独自算出の注目度): 12.300113547413448
- License:
- Abstract: The increasing context window size in large language models (LLMs) has improved their ability to handle complex, long-text tasks. However, as the conversation rounds continue, it is required to store a large amount of KV cache in GPU memory, which significantly affects the efficiency and even availability of the model serving systems. This paper analyzes dialogue data from real users and discovers that the LLM inference manifests a watershed layer, after which the distribution of round-level attention shows notable similarity. We propose Round Attention, a novel round-level attention mechanism that only recalls and computes the KV cache of the most relevant rounds. The experiments show that our method saves 55\% memory usage without compromising model performance.
- Abstract(参考訳): 大きな言語モデル(LLM)におけるコンテキストウィンドウサイズの増加により、複雑な長文タスクを処理する能力が改善された。
しかし、会話ラウンドが続くにつれて、大量のKVキャッシュをGPUメモリに格納する必要がある。
本稿では,実際のユーザからの対話データを解析し,LLM推論が流域層を示し,その後にラウンドレベルの注目の分布が顕著な類似性を示すことを示す。
我々は,最も関連性の高いラウンドのKVキャッシュをリコールし,計算するラウンドアテンション機構であるラウンドアテンションを提案する。
実験の結果,提案手法はモデル性能を損なうことなく,55%のメモリ使用量を削減できることがわかった。
関連論文リスト
- Activation-aware Probe-Query: Effective Key-Value Retrieval for Long-Context LLMs Inference [56.71209737306054]
我々は,プローブ-textbfQuery を動的に決定し,関連する textbfKV ペアを推論するために利用する,トレーニングフリーの textbfActivation-aware アプローチである textbfActQKV を提案する。
Long-Bench と $infty$ Benchmarks の実験では、競合する推論品質とリソース効率を備えた最先端のパフォーマンスが実証されている。
論文 参考訳(メタデータ) (2025-02-19T08:50:44Z) - CSR:Achieving 1 Bit Key-Value Cache via Sparse Representation [63.65323577445951]
キャッシュスパース表現(CSR)と呼ばれる新しい手法を提案する。
CSRは、密度の高いKey-Valueキャッシュテンソルをスパースインデックスとウェイトに変換し、LLM推論中によりメモリ効率のよい表現を提供する。
我々の実験は、CSRが最先端KVキャッシュ量子化アルゴリズムに匹敵する性能を達成することを示した。
論文 参考訳(メタデータ) (2024-12-16T13:01:53Z) - A Stitch in Time Saves Nine: Small VLM is a Precise Guidance for Accelerating Large VLMs [65.00970402080351]
大規模視覚言語モデル(VLM)を加速するための有望なアプローチは、特定のレイヤからの注意マップのような部分的な情報を使用してトークンの重要性を評価し、重要度を低く抑えることである。
i) 重要な視覚的トークンを正確に識別するには,部分的注意情報は不十分であり,特に低トークン保持率において,最適なパフォーマンスをもたらす。 (ii) 全層に集約された注目マップのようなグローバルな注意情報は,より効果的に重要なトークンを保存し,攻撃的プルーニングの下で同等のパフォーマンスを維持する。 (iii) 小さなVLMから集約されたグローバルな注意マップは,大きなVLMとよく似ている。
論文 参考訳(メタデータ) (2024-12-04T13:56:44Z) - Anchor Attention, Small Cache: Code Generation with Large Language Models [15.94784908771546]
NLPの現在のプラクティスは、コード生成タスクにおいて、不正確な、あるいは幻覚を引き起こす可能性のある、スパースアテンションを使用することが多い。
本稿では,コンテキスト情報を抽出・圧縮するトークン・アンカー・アテンションを特徴とする新しいアプローチであるAnchorCoderを提案する。
モデルの性能の大部分を保ちながら、KVキャッシュの要求を大幅に削減できる(少なくとも70%)。
論文 参考訳(メタデータ) (2024-11-11T02:47:05Z) - Inference-Friendly Models With MixAttention [7.103010772135246]
MixAttentionは、最近のトークンの小さなサブセットだけをKVキャッシュに格納するスライディングウィンドウアテンションと、レイヤ間のKVキャッシュ共有を組み合わせたものだ。
実験により,MixAttentionはメモリ使用量を大幅に削減し,短文タスクと長文タスクの両方においてモデル性能を犠牲にすることなく推論速度を向上することを示した。
論文 参考訳(メタデータ) (2024-09-23T13:37:25Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - Model Tells You Where to Merge: Adaptive KV Cache Merging for LLMs on Long-Context Tasks [21.815661269986425]
KVMergerと呼ばれる新しいKVキャッシュマージ手法を提案し、長文タスクに対して適応的なKVキャッシュ圧縮を実現する。
我々のアプローチは、キー状態が1つのシーケンス内のトークンレベルで高い類似性を示すという興味深い観察にインスパイアされている。
我々は,制約メモリ予算下での長時間コンテキストタスクに対するKVMergerの有効性を示すため,広範囲な実験を行った。
論文 参考訳(メタデータ) (2024-07-11T12:50:42Z) - CORM: Cache Optimization with Recent Message for Large Language Model Inference [57.109354287786154]
メモリフットプリントを大幅に最小化するKVキャッシュを最適化する革新的な手法を提案する。
KVキャッシュ消去ポリシーであるCORMは、モデル微調整を必要とせずに、推論に必要なキーと値のペアを動的に保持する。
検証の結果,CORMはKVキャッシュの推論メモリ使用量を最大70%削減し,LongBenchの6つのタスクで性能劣化を無視できることがわかった。
論文 参考訳(メタデータ) (2024-04-24T16:11:54Z) - In-context Autoencoder for Context Compression in a Large Language Model [70.7621953091318]
In-context Autoencoder (ICAE) を提案し、長いコンテキストを短いメモリスロットに圧縮する。
ICAEは、大量のテキストデータに基づく自動符号化と言語モデリングの両方の目的を用いて、まず事前訓練を行う。
論文 参考訳(メタデータ) (2023-07-13T17:59:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。