論文の概要: A Data-Driven Real-Time Optimal Power Flow Algorithm Using Local Feedback
- arxiv url: http://arxiv.org/abs/2502.15306v1
- Date: Fri, 21 Feb 2025 09:02:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 16:09:36.348299
- Title: A Data-Driven Real-Time Optimal Power Flow Algorithm Using Local Feedback
- Title(参考訳): 局所フィードバックを用いたデータ駆動リアルタイム最適潮流アルゴリズム
- Authors: Heng Liang, Yujin Huang, Changhong Zhao,
- Abstract要約: 本稿では,データ駆動型リアルタイムアルゴリズムを提案する。
具体的には,局所的なフィードバックをアルゴリズムの入力とする学習可能な関数を設計する。
我々は、ディープニューラルネットワーク(DNN)に基づくOPF問題の変種を解決するために、原始二重更新を開発する。
- 参考スコア(独自算出の注目度): 6.455816281436382
- License:
- Abstract: The increasing penetration of distributed energy resources (DERs) adds variability as well as fast control capabilities to power networks. Dispatching the DERs based on local information to provide real-time optimal network operation is the desideratum. In this paper, we propose a data-driven real-time algorithm that uses only the local measurements to solve time-varying AC optimal power flow (OPF). Specifically, we design a learnable function that takes the local feedback as input in the algorithm. The learnable function, under certain conditions, will result in a unique stationary point of the algorithm, which in turn transfers the OPF problems to be optimized over the parameters of the function. We then develop a stochastic primal-dual update to solve the variant of the OPF problems based on a deep neural network (DNN) parametrization of the learnable function, which is referred to as the training stage. We also design a gradient-free alternative to bypass the cumbersome gradient calculation of the nonlinear power flow model. The OPF solution-tracking error bound is established in the sense of universal approximation of DNN. Numerical results on the IEEE 37-bus test feeder show that the proposed method can track the time-varying OPF solutions with higher accuracy and faster computation compared to benchmark methods.
- Abstract(参考訳): 分散エネルギー資源(DER)の浸透が増加すると、電力ネットワークへの可変性と高速制御能力が増す。
実時間最適ネットワーク操作を実現するためにローカル情報に基づいてDERをディスパッチすることはデシプラタムである。
本稿では,データ駆動型リアルタイムアルゴリズムを提案する。このアルゴリズムは,局所的な測定のみを用いて,時間変化のある交流最適電力フロー(OPF)を解く。
具体的には,局所的なフィードバックをアルゴリズムの入力とする学習可能な関数を設計する。
学習可能な関数は、ある条件下ではアルゴリズムのユニークな定常点となり、関数のパラメータよりも最適化されるOPF問題を転送する。
次に,学習可能関数の深部ニューラルネットワーク(DNN)パラメトリゼーションに基づくOPF問題の変種を学習段階と呼ぶ確率的原始双対更新を開発する。
また,非線形潮流モデルの煩雑な勾配計算をバイパスするグラデーションフリーの代替案も設計する。
OPFの解追跡誤差境界は、DNNの普遍近似の意味で確立される。
IEEE 37-busテストフィードの数値計算結果から,提案手法はベンチマーク法と比較して,より高精度で高速な計算で,時間変化のOPFソリューションを追跡できることがわかった。
関連論文リスト
- Graph Neural Network-Accelerated Network-Reconfigured Optimal Power Flow [0.24554686192257422]
本稿では、特にグラフニューラルネットワーク(GNN)を利用した機械学習(ML)に基づくアプローチを提案する。
GNNモデルは最適化段階に入る前に最高のトポロジを予測するためにオフラインで訓練される。
高速なオンラインポストML選択層も提案され、GNN予測を分析し、高い信頼性で予測されたNRソリューションのサブセットを選択する。
論文 参考訳(メタデータ) (2024-10-22T22:35:09Z) - Unsupervised Deep Learning for AC Optimal Power Flow via Lagrangian
Duality [3.412750324146571]
AC最適電力フローは電力系統解析における基本的な最適化問題である。
ディープラーニングベースのアプローチは、時間を要するトレーニングプロセスをオフラインで実行するために、集中的に注目を集めています。
本稿では,AC-OPFのためのエンドツーエンドな教師なし学習基盤を提案する。
論文 参考訳(メタデータ) (2022-12-07T22:26:45Z) - Faster Adaptive Federated Learning [84.38913517122619]
フェデレートラーニングは分散データの出現に伴って注目を集めている。
本稿では,クロスサイロFLにおけるモーメントに基づく分散低減手法に基づく適応アルゴリズム(FAFED)を提案する。
論文 参考訳(メタデータ) (2022-12-02T05:07:50Z) - NET-FLEET: Achieving Linear Convergence Speedup for Fully Decentralized
Federated Learning with Heterogeneous Data [12.701031075169887]
フェデレーテッド・ラーニング(FL)は、データプライバシ保護、効率的な通信、並列データ処理といったメリットにより、近年、注目を集めている。
FLの既存の作業の多くは、データと集中型パラメータサーバを持つシステムに限られている。
我々は、データ不均一性を持つ完全分散FLシステムのための新しいアルゴリズム、NET-FLEETを提案する。
論文 参考訳(メタデータ) (2022-08-17T19:17:23Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
最適な電力フロー(ACOPF)のソリューションを解決するために、ディープニューラルネットワーク(DNN)を提案します。
提案されたSIDNNは、幅広いOPFスキームと互換性がある。
他のLearning-to-OPFスキームとシームレスに統合できる。
論文 参考訳(メタデータ) (2021-03-27T00:45:23Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
メタラーニング(MTL)アプローチを用いて訓練されたDNNベースのOPF予測器を提案する。
開発したOPF予測器はベンチマークIEEEバスシステムを用いてシミュレーションにより検証される。
論文 参考訳(メタデータ) (2020-12-21T17:39:51Z) - DeepOPF: A Feasibility-Optimized Deep Neural Network Approach for AC
Optimal Power Flow Problems [25.791128241015684]
我々は、従来の解法で使用されるわずかな時間でAC-OPF問題を解決するために、DeepOPFと呼ばれるディープニューラルネットワーク(DNN)アプローチを開発した。
我々はDeepOPFが最先端の解法と比較して最大2桁の計算時間を高速化することを示した。
論文 参考訳(メタデータ) (2020-07-02T10:26:46Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
フェデレートラーニング(FL)は、分散データから学ぶための一般的なパラダイムになっています。
クラウドに移行することなく、さまざまなデバイスのデータを効果的に活用するために、Federated Averaging(FedAvg)などのアルゴリズムでは、"Computation then aggregate"(CTA)モデルを採用している。
論文 参考訳(メタデータ) (2020-05-22T23:07:42Z) - Channel Assignment in Uplink Wireless Communication using Machine
Learning Approach [54.012791474906514]
本稿では,アップリンク無線通信システムにおけるチャネル割り当て問題について検討する。
我々の目標は、整数チャネル割り当て制約を受ける全ユーザの総和率を最大化することです。
計算複雑性が高いため、機械学習アプローチは計算効率のよい解を得るために用いられる。
論文 参考訳(メタデータ) (2020-01-12T15:54:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。