論文の概要: ARS: Automatic Routing Solver with Large Language Models
- arxiv url: http://arxiv.org/abs/2502.15359v1
- Date: Fri, 21 Feb 2025 10:14:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 16:11:09.266959
- Title: ARS: Automatic Routing Solver with Large Language Models
- Title(参考訳): ARS: 大規模言語モデルによる自動ルーティングソリューション
- Authors: Kai Li, Fei Liu, Zhenkun Wang, Xialiang Tong, Xiongwei Han, Mingxuan Yuan,
- Abstract要約: 本稿では,自動ルーティング解法の有効性を評価するために,24属性から派生した1000種類のVRPのベンチマークであるRoutBenchを紹介する。
RoutBenchとともに,Large Language Model (LLM) エージェントを用いてバックボーンアルゴリズムフレームワークを強化する自動ルーティングソルバー(ARS)を提案する。
ARSは最先端のLCMベースの手法と一般的に使用されるソルバより優れており、一般的なVRPの91.67%が自動的に解決され、すべてのベンチマークで少なくとも30%の改善が達成されている。
- 参考スコア(独自算出の注目度): 13.85246182755324
- License:
- Abstract: Real-world Vehicle Routing Problems (VRPs) are characterized by a variety of practical constraints, making manual solver design both knowledge-intensive and time-consuming. Although there is increasing interest in automating the design of routing algorithms, existing research has explored only a limited array of VRP variants and fails to adequately address the complex and prevalent constraints encountered in real-world situations. To fill this gap, this paper introduces RoutBench, a benchmark of 1,000 VRP variants derived from 24 attributes, for evaluating the effectiveness of automatic routing solvers in addressing complex constraints. Along with RoutBench, we present the Automatic Routing Solver (ARS), which employs Large Language Model (LLM) agents to enhance a backbone algorithm framework by automatically generating constraint-aware heuristic code, based on problem descriptions and several representative constraints selected from a database. Our experiments show that ARS outperforms state-of-the-art LLM-based methods and commonly used solvers, automatically solving 91.67% of common VRPs and achieving at least a 30% improvement across all benchmarks.
- Abstract(参考訳): 現実世界の車両ルーティング問題(VRP)は、知識集約と時間消費の両方を手作業で設計する、様々な実践的な制約によって特徴づけられる。
ルーティングアルゴリズムの設計の自動化への関心は高まっているが、既存の研究ではVRPのバリエーションが限られており、現実の状況で遭遇する複雑な制約に適切に対処することができない。
このギャップを埋めるために、複雑な制約に対処する自動ルーティング解決器の有効性を評価するために、24の属性から派生した1000のVRP変種をベンチマークしたRoutBenchを紹介する。
RoutBenchとともに,問題記述とデータベースから選択されたいくつかの代表的制約に基づいて制約対応ヒューリスティックコードを自動的に生成することにより,大言語モデル(LLM)エージェントを用いてバックボーンアルゴリズムフレームワークを強化する自動ルーティングソルバー(ARS)を提案する。
実験の結果,ALS は最先端の LLM 法および一般用ソルバよりも優れており,91.67% の一般的な VRP を自動解決し,全ベンチマークで少なくとも30% の改善を実現していることがわかった。
関連論文リスト
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - DeepMDV: Learning Global Matching for Multi-depot Vehicle Routing Problems [1.0104586293349587]
近年、企業はより多くの補給所を追加する戦略を採用してきた。
複数の補給所の存在は、既存のVRPソリューションを最適にするために、さらなる複雑さをもたらす。
従来のMDVRPの解法は時間を要することが多く、大規模なインスタンスには適さない。
本稿では,2つの鍵層を持つデコーダを特徴とするアテンション機構を用いたMDVRPの新しい解を提案する。
論文 参考訳(メタデータ) (2024-11-26T03:41:01Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
自動機械学習(Automated Machine Learning, ML)は、開発パイプライン内のタスクを自動化することによって、AI開発を加速する。
近年の作業では,そのような負担を軽減するために,大規模言語モデル(LLM)の利用が始まっている。
本稿では,フルパイプのAutoMLに適した新しいマルチエージェントフレームワークであるAutoML-Agentを提案する。
論文 参考訳(メタデータ) (2024-10-03T20:01:09Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) は、質問回答(QA)のようなタスクにおける応答精度を高めるための有望なアプローチとして登場した。
本稿では,クエリの複雑さに基づいて,LLMの最適戦略を動的に選択できる適応型QAフレームワークを提案する。
オープンドメインのQAデータセットを用いて、複数のクエリの複雑さを網羅し、QAシステムの全体的な効率性と精度を高めることを示す。
論文 参考訳(メタデータ) (2024-03-21T13:52:30Z) - Multi-Task Learning for Routing Problem with Cross-Problem Zero-Shot Generalization [18.298695520665348]
車両ルーティング問題(VRP)は多くの現実世界のアプリケーションで見られる。
本研究では,クロスプロブレム一般化という重要な課題に取り組むための最初の試みを行う。
提案モデルでは、ゼロショットの一般化方式で、見当たらない属性の組み合わせでVRPを解くことができる。
論文 参考訳(メタデータ) (2024-02-23T13:25:23Z) - Spatial-temporal-demand clustering for solving large-scale vehicle
routing problems with time windows [0.0]
本稿では,クラスタリングを用いて顧客をグループ化するDRI(Decompose-route-improve)フレームワークを提案する。
その類似度基準は、顧客の空間的、時間的、需要データを含む。
本研究では,解答サブプロブレム間でプルーンド局所探索(LS)を適用し,全体の解法を改善する。
論文 参考訳(メタデータ) (2024-01-20T06:06:01Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - AutoAct: Automatic Agent Learning from Scratch for QA via Self-Planning [54.47116888545878]
AutoActはQAのための自動エージェント学習フレームワークである。
大規模アノテートデータやクローズドソースモデルからの合成計画軌道は依存していない。
論文 参考訳(メタデータ) (2024-01-10T16:57:24Z) - Resource-Aware Pareto-Optimal Automated Machine Learning Platform [1.6746303554275583]
新プラットフォーム Resource-Aware AutoML (RA-AutoML)
RA-AutoMLは、フレキシブルで一般化されたアルゴリズムで、複数の目的に合わせた機械学習モデルを構築することができる。
論文 参考訳(メタデータ) (2020-10-30T19:37:48Z) - Multi-Vehicle Routing Problems with Soft Time Windows: A Multi-Agent
Reinforcement Learning Approach [9.717648122961483]
ソフトタイムウインドウ(MVRPSTW)を用いたマルチ車両ルーティング問題は、都市ロジスティクスシステムにおいて不可欠である。
従来の手法は計算効率と解の質のジレンマを引き起こす。
そこで本研究では,ルーティング問題の解決に要する時間的オフライントレーニングのメリットを即時評価する,Multi-Agent Attention Modelと呼ばれる新しい強化学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-13T14:26:27Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
本稿では,ミリ波通信網における車とセルの関連性について検討する。
まず、ユーザ状態(VU)問題を離散的な非車両関連最適化問題として定式化する。
提案手法は,複数のベースライン設計と比較して,ユーザの複雑性とVUEの20%削減の合計で最大15%のゲインが得られる。
論文 参考訳(メタデータ) (2020-01-22T08:51:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。