論文の概要: Evaluating Social Biases in LLM Reasoning
- arxiv url: http://arxiv.org/abs/2502.15361v1
- Date: Fri, 21 Feb 2025 10:16:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 21:37:39.139418
- Title: Evaluating Social Biases in LLM Reasoning
- Title(参考訳): LLM推論における社会的バイアスの評価
- Authors: Xuyang Wu, Jinming Nian, Zhiqiang Tao, Yi Fang,
- Abstract要約: 本稿では,DeepSeek-R1 の 8B と 32B の変種を,BBQ データセット上の命令調整版と比較した。
我々の知る限りでは、この実証的研究は、LLM推論におけるバイアス問題を初めて評価するものである。
- 参考スコア(独自算出の注目度): 19.824838766883534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the recent development of AI reasoning, large language models (LLMs) are trained to automatically generate chain-of-thought reasoning steps, which have demonstrated compelling performance on math and coding tasks. However, when bias is mixed within the reasoning process to form strong logical arguments, it could cause even more harmful results and further induce hallucinations. In this paper, we have evaluated the 8B and 32B variants of DeepSeek-R1 against their instruction tuned counterparts on the BBQ dataset, and investigated the bias that is elicited out and being amplified through reasoning steps. To the best of our knowledge, this empirical study is the first to assess bias issues in LLM reasoning.
- Abstract(参考訳): AI推論の最近の発展において、大規模言語モデル(LLM)は、数学やコーディングタスクにおいて魅力的なパフォーマンスを示すチェーンオブ思考推論ステップを自動生成するように訓練されている。
しかし、推論過程の中でバイアスが混合されて強い論理的議論が形成されると、さらに有害な結果をもたらし、さらに幻覚を引き起こす可能性がある。
本稿では,BBQデータセット上の命令調律モデルに対して,DeepSeek-R1の8Bおよび32Bの変種を評価し,推論ステップによって抽出され増幅されるバイアスについて検討した。
我々の知る限りでは、この経験的研究は、LLM推論におけるバイアス問題を初めて評価するものである。
関連論文リスト
- FairReason: Balancing Reasoning and Social Bias in MLLMs [50.618158642714505]
MLLM(Multimodal Large Language Models)は、様々なタスクやモダリティにおいて、最先端の成果をすでに達成している。
近年の研究では、推論能力をさらに推し進めるために、先進的なプロンプトスキームと後続の微調整を探求している。
論文 参考訳(メタデータ) (2025-07-30T19:57:22Z) - Mitigating Spurious Correlations in LLMs via Causality-Aware Post-Training [57.03005244917803]
大規模言語モデル (LLMs) は、事前学習中に得られた素早い相関関係により、アウト・オブ・ディストリビューション (OOD) のサンプルで失敗することが多い。
ここでは、因果認識後学習(CAPT)を通して、このような素因的相関を緩和することを目的とする。
公式因果推論ベンチマークCLadderと論理推論データセットPrOntoQAの実験により、CAPTで微調整された3Bスケールの言語モデルでは、従来のSFTおよびより大きなLLMを分散処理(ID)およびOODタスクで上回る結果が得られた。
論文 参考訳(メタデータ) (2025-06-11T06:30:28Z) - Have Large Language Models Learned to Reason? A Characterization via 3-SAT Phase Transition [11.422434149376478]
大規模言語モデル(LLM)は高度な推論能力を持つAIモデルとして評価されている。
理論上は、Chain-of-Thought (CoT) を用いた自己回帰 LLM は複雑な推論タスクを解くためによりシリアルな計算を行うことができる。
近年の研究では、LSMは、この能力にもかかわらず、理性を学ぶのではなく、統計的特徴に適合することが示唆されている。
論文 参考訳(メタデータ) (2025-04-04T20:57:36Z) - Unveiling the Magic of Code Reasoning through Hypothesis Decomposition and Amendment [54.62926010621013]
我々は,大規模言語モデルの推論能力に対する新たな視点を提供するために,新しいタスクであるコード推論を導入する。
論理的推論の確立した形式に基づいて3つのメタベンチマークを要約し、8つの特定のベンチマークタスクにインスタンス化する。
本稿では,人間の複雑な問題解決手法に触発された新たな経路探索パイプラインを提案する。
論文 参考訳(メタデータ) (2025-02-17T10:39:58Z) - Explicit vs. Implicit: Investigating Social Bias in Large Language Models through Self-Reflection [18.625071242029936]
大規模言語モデル(LLM)は、生成されたコンテンツに様々なバイアスとステレオタイプを示すことが示されている。
本稿では,LLMにおける明示的偏見と暗黙的偏見を調査・比較するための体系的枠組みを提案する。
論文 参考訳(メタデータ) (2025-01-04T14:08:52Z) - Critical-Questions-of-Thought: Steering LLM reasoning with Argumentative Querying [0.3659498819753633]
State-of-the-art Large Language Model (LLM) は論理的および数学的推論を行う際にも苦戦している。
本稿では、議論論に関する文献からの批判的質問の概念を利用し、特にトゥールミンの議論モデルに焦点を当てる。
これらの重要な質問を取り入れることで,LLMの推論能力が向上することを示す。
論文 参考訳(メタデータ) (2024-12-19T18:51:30Z) - Evaluating and Mitigating Social Bias for Large Language Models in Open-ended Settings [13.686732204665738]
既存のBBQデータセットを,補間質問型と短解質問型を組み込むことで拡張する。
我々の発見によると、LSMは年齢や社会経済的地位など、特定の保護された属性に対してより偏りのある反応を生み出す。
偏見をゼロショット、少数ショット、チェーン・オブ・シントを組み合わせることで、偏見のレベルを約0。
論文 参考訳(メタデータ) (2024-12-09T01:29:47Z) - How far can bias go? -- Tracing bias from pretraining data to alignment [54.51310112013655]
本研究では, 事前学習データにおける性別占有バイアスと, LLMにおける性別占有バイアスの相関について検討した。
その結果,事前学習データに存在するバイアスがモデル出力に増幅されることが判明した。
論文 参考訳(メタデータ) (2024-11-28T16:20:25Z) - Assessing Bias in Metric Models for LLM Open-Ended Generation Bias Benchmarks [3.973239756262797]
本研究では,BOLDやSAGEDといったオープンソースのベンチマークにおいて,そのようなバイアスについて検討する。
結果は、より堅牢なバイアスメトリックモデルを要求する、人口統計記述子の不平等な扱いを明らかにしている。
論文 参考訳(メタデータ) (2024-10-14T20:08:40Z) - Investigating Implicit Bias in Large Language Models: A Large-Scale Study of Over 50 LLMs [0.0]
大規模言語モデル(LLM)は幅広いタスクで採用されている。
最近の研究では、LLMは明示的な偏見評価をパスしても暗黙の偏見を抑えることができることが示されている。
この研究は、新しい言語モデルやより大きな言語モデルが自動的にバイアスを減らさないことを強調している。
論文 参考訳(メタデータ) (2024-10-13T03:43:18Z) - RATIONALYST: Pre-training Process-Supervision for Improving Reasoning [41.9992614617405]
本稿では,事前学習に基づく推論のプロセス・スーパービジョンのモデルであるRATIONALYSTを紹介する。
We extract 79k rationales from web-scale unlabelled dataset (the Pile) and a combination of reasoning datasets with minimal human intervention。
LLaMa-3-8Bの微調整により、RATIONALYSTは7つの代表的な推論ベンチマークで平均3.9%の推論精度を向上させる。
論文 参考訳(メタデータ) (2024-10-01T20:05:51Z) - Identifying and Mitigating Social Bias Knowledge in Language Models [52.52955281662332]
個々人の社会的偏見をきめ細かなキャリブレーションを可能にする新しいデバイアス・アプローチであるFairness Stamp(FAST)を提案する。
FASTは最先端のベースラインを超え、デバイアス性能が優れている。
これは、大きな言語モデルにおける公平性を達成するためのきめ細かいデバイアス戦略の可能性を強調している。
論文 参考訳(メタデータ) (2024-08-07T17:14:58Z) - A Systematic Analysis of Large Language Models as Soft Reasoners: The Case of Syllogistic Inferences [5.141416267381492]
我々は、論理学と認知心理学において広範囲に研究されている誘因的推論の領域であるシロメトリクス推論の事例を考察する。
思考の連鎖的推論,文脈内学習,教師付き微調整がシロメトリクス的推論に及ぼす影響について検討した。
以上の結果から,事前学習したLSMの行動は認知科学によって説明できる可能性が示唆された。
論文 参考訳(メタデータ) (2024-06-17T08:59:04Z) - A Peek into Token Bias: Large Language Models Are Not Yet Genuine Reasoners [58.15511660018742]
本研究では,大規模言語モデル (LLM) が真の推論能力を持つかどうかを評価するための仮説検証フレームワークを提案する。
我々は,相補的な誤りとシロジカルな問題を特徴とする,注意深く制御された合成データセットを開発した。
論文 参考訳(メタデータ) (2024-06-16T19:22:53Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
最近開発された大規模言語モデル (LLM) は、幅広い言語理解タスクにおいて非常によく機能することが示されている。
しかし、それらは自然言語に対して本当に「理性」があるのだろうか?
この疑問は研究の注目を集めており、コモンセンス、数値、定性的など多くの推論技術が研究されている。
論文 参考訳(メタデータ) (2024-04-23T21:08:49Z) - LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
大規模言語モデル(LLM)の論理的推論能力を評価・拡張するための新しいアプローチであるLogicAskerを紹介する。
提案手法は, LLMが論理規則を学習する際の大きなギャップを明らかにし, 異なるモデル間で29%から90%の推論失敗を識別する。
GPT-4oのようなモデルにおける論理的推論を最大5%向上させることで、これらの知見を活用して、ターゲットとなる実演例と微調整データを構築した。
論文 参考訳(メタデータ) (2024-01-01T13:53:53Z) - GPTBIAS: A Comprehensive Framework for Evaluating Bias in Large Language
Models [83.30078426829627]
大規模言語モデル(LLM)は人気を集め、大規模なユーザコミュニティで広く採用されている。
既存の評価手法には多くの制約があり、それらの結果は限定的な解釈可能性を示している。
本稿では,LPMの高性能性を活用し,モデル内のバイアスを評価するGPTBIASというバイアス評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-11T12:02:14Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
論理的推論の文脈において,大規模言語モデル(LLM)の自己検証能力について詳しく検討する。
本研究の主目的は,既存のLCMが誤った推論手順を正確に識別するのに苦労し,自己検証法の有効性を保証できないことにある。
論文 参考訳(メタデータ) (2023-11-14T07:13:10Z) - Concise and Organized Perception Facilitates Reasoning in Large Language Models [32.71672086718057]
大規模言語モデル (LLM) は, 推論作業における乱雑な内容や無関係な内容を扱う際に, 人間の認知バイアスに類似した障害パターンを示す。
コンシス・アンド・オーガナイズド・パーセプション(COP)という新しい推論手法を提案する。
COPは与えられたステートメントを慎重に分析し、冗長性を効率的に排除しながら、最も関連する情報を識別する。
論文 参考訳(メタデータ) (2023-10-05T04:47:49Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。