論文の概要: On Neural BRDFs: A Thorough Comparison of State-of-the-Art Approaches
- arxiv url: http://arxiv.org/abs/2502.15480v1
- Date: Fri, 21 Feb 2025 14:05:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 17:06:45.973788
- Title: On Neural BRDFs: A Thorough Comparison of State-of-the-Art Approaches
- Title(参考訳): ニューラルBRDFについて:現状と現状の比較
- Authors: Florian Hofherr, Bjoern Haefner, Daniel Cremers,
- Abstract要約: 双方向反射率分布関数(BRDF)は光と物質の複雑な相互作用を捉えるための重要なツールである。
本稿では,定性的,定量的な再現性の評価を含む,いくつかの手法の徹底的な評価を行う。
既存のアプローチに追加可能な2つの拡張を提案する。
- 参考スコア(独自算出の注目度): 40.47584239834492
- License:
- Abstract: The bidirectional reflectance distribution function (BRDF) is an essential tool to capture the complex interaction of light and matter. Recently, several works have employed neural methods for BRDF modeling, following various strategies, ranging from utilizing existing parametric models to purely neural parametrizations. While all methods yield impressive results, a comprehensive comparison of the different approaches is missing in the literature. In this work, we present a thorough evaluation of several approaches, including results for qualitative and quantitative reconstruction quality and an analysis of reciprocity and energy conservation. Moreover, we propose two extensions that can be added to existing approaches: A novel additive combination strategy for neural BRDFs that split the reflectance into a diffuse and a specular part, and an input mapping that ensures reciprocity exactly by construction, while previous approaches only ensure it by soft constraints.
- Abstract(参考訳): 双方向反射率分布関数(BRDF)は光と物質の複雑な相互作用を捉えるための重要なツールである。
近年では、既存のパラメトリックモデルから純粋にニューラルパラメトリゼーションまで、様々な戦略に従って、BRDFモデリングに神経学的手法が採用されている。
すべての手法が印象的な結果をもたらす一方で、異なるアプローチの包括的な比較は文献に欠けている。
本研究では, 質的, 定量的な再現性の評価, 相互性および省エネ性の解析など, 様々な手法の徹底的な評価を行う。
さらに,既存のアプローチに付加可能な2つの拡張法を提案する。反射率を拡散部と特異部に分割するニューラルBRDFの新たな付加的組み合わせ戦略と,相互性を確保するための入力マッピングである。
関連論文リスト
- Nonparametric estimation of Hawkes processes with RKHSs [1.775610745277615]
本稿では、再生カーネル空間(RKHS)に相互作用関数が存在すると仮定した非線形ホークス過程の非パラメトリック推定について述べる。
神経科学の応用によって動機づけられたこのモデルは、エキサイティングな効果と阻害的な効果を表現するために、複雑な相互作用機能を実現する。
本手法は, 関連する非パラメトリック推定手法よりも優れた性能を示し, 神経応用に適していることが示唆された。
論文 参考訳(メタデータ) (2024-11-01T14:26:50Z) - Multiparameter regularization and aggregation in the context of polynomial functional regression [2.1960518939650475]
本稿では,複数のパラメータの正規化のためのアルゴリズムを導入し,関連するパラメータを扱うための理論的基礎的手法を提案する。
提案手法の有効性は, 人工医療データと実世界の医療データの両方を用いて評価し, 有望な結果が得られた。
論文 参考訳(メタデータ) (2024-05-07T09:26:20Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
我々は,多チャンネル畳み込み解析演算子学習法(MCAOL)を開発した。
本研究では,低エネルギー,高エネルギーで減衰画像を共同で再構成する最適化手法を提案する。
論文 参考訳(メタデータ) (2022-03-10T14:22:54Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - UnitedQA: A Hybrid Approach for Open Domain Question Answering [70.54286377610953]
最近の訓練済みのニューラル言語モデルに基づいて,抽出的および生成的読取能力を高めるために,新しい手法を適用した。
私たちのアプローチは、それぞれNaturalQuestionsとTriviaQAと正確な一致で、以前の最先端のモデルを3.3と2.7ポイント上回る。
論文 参考訳(メタデータ) (2021-01-01T06:36:16Z) - Energy-based View of Retrosynthesis [70.66156081030766]
エネルギーモデルとしてシーケンスおよびグラフベースの手法を統一するフレームワークを提案する。
本稿では,ベイズ前方および後方予測に対して一貫した訓練を行うフレームワーク内での新しい二重変種を提案する。
このモデルは、反応型が不明なテンプレートフリーアプローチに対して、最先端の性能を9.6%向上させる。
論文 参考訳(メタデータ) (2020-07-14T18:51:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。