Anomaly Detection in Smart Power Grids with Graph-Regularized MS-SVDD: a Multimodal Subspace Learning Approach
- URL: http://arxiv.org/abs/2502.15793v1
- Date: Tue, 18 Feb 2025 16:47:54 GMT
- Title: Anomaly Detection in Smart Power Grids with Graph-Regularized MS-SVDD: a Multimodal Subspace Learning Approach
- Authors: Thomas Debelle, Fahad Sohrab, Pekka Abrahamsson, Moncef Gabbouj,
- Abstract summary: We address an anomaly detection problem in smart power grids using Multimodal Subspace Support Vector Data Description (MS-SVDD)<n>This approach aims to leverage better feature relations by considering the data as coming from different modalities.<n>We introduce novel multimodal graph-embedded regularizers that leverage graph information for every modality to enhance the training process.
- Score: 14.794452134569474
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we address an anomaly detection problem in smart power grids using Multimodal Subspace Support Vector Data Description (MS-SVDD). This approach aims to leverage better feature relations by considering the data as coming from different modalities. These data are projected into a shared lower-dimensionality subspace which aims to preserve their inner characteristics. To supplement the previous work on this subject, we introduce novel multimodal graph-embedded regularizers that leverage graph information for every modality to enhance the training process, and we consider an improved training equation that allows us to maximize or minimize each modality according to the specified criteria. We apply this regularized graph-embedded model on a 3-modalities dataset after having generalized MS-SVDD algorithms to any number of modalities. To set up our application, we propose a whole preprocessing procedure to extract One-Class Classification training instances from time-bounded event time series that are used to evaluate both the reliability and earliness of our model for Event Detection.
Related papers
- PRISM: Self-Pruning Intrinsic Selection Method for Training-Free Multimodal Data Selection [28.442470930703337]
PRISM is a training-free approach for efficient multimodal data selection.<n>It uses Pearson correlation analysis to quantify the intrinsic visual encoding properties of MLLMs.<n>It reduces the overall time required for visual instruction tuning and data selection to just 30% of conventional methods.
arXiv Detail & Related papers (2025-02-17T18:43:41Z) - SM3Det: A Unified Model for Multi-Modal Remote Sensing Object Detection [73.49799596304418]
This paper introduces a new task called Multi-Modal datasets and Multi-Task Object Detection (M2Det) for remote sensing.<n>It is designed to accurately detect horizontal or oriented objects from any sensor modality.<n>This task poses challenges due to 1) the trade-offs involved in managing multi-modal modelling and 2) the complexities of multi-task optimization.
arXiv Detail & Related papers (2024-12-30T02:47:51Z) - XTrack: Multimodal Training Boosts RGB-X Video Object Trackers [88.72203975896558]
It is crucial to ensure that knowledge gained from multimodal sensing is effectively shared.<n>Similar samples across different modalities have more knowledge to share than otherwise.<n>We propose a method for RGB-X tracker during inference, with an average +3% precision improvement over the current SOTA.
arXiv Detail & Related papers (2024-05-28T03:00:58Z) - NativE: Multi-modal Knowledge Graph Completion in the Wild [51.80447197290866]
We propose a comprehensive framework NativE to achieve MMKGC in the wild.
NativE proposes a relation-guided dual adaptive fusion module that enables adaptive fusion for any modalities.
We construct a new benchmark called WildKGC with five datasets to evaluate our method.
arXiv Detail & Related papers (2024-03-28T03:04:00Z) - DG-TTA: Out-of-domain medical image segmentation through Domain Generalization and Test-Time Adaptation [43.842694540544194]
We propose to combine domain generalization and test-time adaptation to create a highly effective approach for reusing pre-trained models in unseen target domains.
We demonstrate that our method, combined with pre-trained whole-body CT models, can effectively segment MR images with high accuracy.
arXiv Detail & Related papers (2023-12-11T10:26:21Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - From random-walks to graph-sprints: a low-latency node embedding
framework on continuous-time dynamic graphs [4.372841335228306]
We propose a framework for continuous-time-dynamic-graphs (CTDGs) that has low latency and is competitive with state-of-the-art, higher latency models.
In our framework, time-aware node embeddings summarizing multi-hop information are computed using only single-hop operations on the incoming edges.
We demonstrate that our graph-sprints features, combined with a machine learning, achieve competitive performance.
arXiv Detail & Related papers (2023-07-17T12:25:52Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
We study the modality bias problem in the context of multi-modal classification.
We propose a plug-and-play loss function method, whereby the feature space for each label is adaptively learned.
Our method yields remarkable performance improvements compared with the baselines.
arXiv Detail & Related papers (2022-02-25T13:47:09Z) - Active Learning with Pseudo-Labels for Multi-View 3D Pose Estimation [18.768030475943213]
We improve Active Learning for the problem of 3D pose estimation in a multi-view setting.
We develop a framework that allows us to efficiently extend existing single-view AL strategies.
We demonstrate additional performance gains by incorporating predicted pseudo-labels, which is a form of self-training.
arXiv Detail & Related papers (2021-12-27T14:34:25Z) - Auto-weighted Multi-view Feature Selection with Graph Optimization [90.26124046530319]
We propose a novel unsupervised multi-view feature selection model based on graph learning.
The contributions are threefold: (1) during the feature selection procedure, the consensus similarity graph shared by different views is learned.
Experiments on various datasets demonstrate the superiority of the proposed method compared with the state-of-the-art methods.
arXiv Detail & Related papers (2021-04-11T03:25:25Z) - TrackMPNN: A Message Passing Graph Neural Architecture for Multi-Object
Tracking [8.791710193028903]
This study follows many previous approaches to multi-object tracking (MOT) that model the problem using graph-based data structures.
We create a framework based on dynamic undirected graphs that represent the data association problem over multiple timesteps.
We also provide solutions and propositions for the computational problems that need to be addressed to create a memory-efficient, real-time, online algorithm.
arXiv Detail & Related papers (2021-01-11T21:52:25Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - Analyzing Unaligned Multimodal Sequence via Graph Convolution and Graph
Pooling Fusion [28.077474663199062]
We propose a novel model, termed Multimodal Graph, to investigate the effectiveness of graph neural networks (GNN) on modeling multimodal sequential data.
Our graph-based model reaches state-of-the-art performance on two benchmark datasets.
arXiv Detail & Related papers (2020-11-27T06:12:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.