論文の概要: A Comprehensive Survey on the Trustworthiness of Large Language Models in Healthcare
- arxiv url: http://arxiv.org/abs/2502.15871v1
- Date: Fri, 21 Feb 2025 18:43:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 22:36:55.848671
- Title: A Comprehensive Survey on the Trustworthiness of Large Language Models in Healthcare
- Title(参考訳): 医療における大規模言語モデルの信頼性に関する総合調査
- Authors: Manar Aljohani, Jun Hou, Sindhura Kommu, Xuan Wang,
- Abstract要約: 医療における大規模言語モデル(LLM)の適用は、臨床意思決定、医学研究、患者医療に革命をもたらす可能性がある。
LLMはますます医療システムに統合されているため、信頼性と倫理的展開を保証するために、いくつかの重要な課題に対処する必要がある。
- 参考スコア(独自算出の注目度): 5.765614539740084
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The application of large language models (LLMs) in healthcare has the potential to revolutionize clinical decision-making, medical research, and patient care. As LLMs are increasingly integrated into healthcare systems, several critical challenges must be addressed to ensure their reliable and ethical deployment. These challenges include truthfulness, where models generate misleading information; privacy, with risks of unintentional data retention; robustness, requiring defenses against adversarial attacks; fairness, addressing biases in clinical outcomes; explainability, ensuring transparent decision-making; and safety, mitigating risks of misinformation and medical errors. Recently, researchers have begun developing benchmarks and evaluation frameworks to systematically assess the trustworthiness of LLMs. However, the trustworthiness of LLMs in healthcare remains underexplored, lacking a systematic review that provides a comprehensive understanding and future insights into this area. This survey bridges this gap by providing a comprehensive overview of the recent research of existing methodologies and solutions aimed at mitigating the above risks in healthcare. By focusing on key trustworthiness dimensions including truthfulness, privacy and safety, robustness, fairness and bias, and explainability, we present a thorough analysis of how these issues impact the reliability and ethical use of LLMs in healthcare. This paper highlights ongoing efforts and offers insights into future research directions to ensure the safe and trustworthy deployment of LLMs in healthcare.
- Abstract(参考訳): 医療における大規模言語モデル(LLM)の適用は、臨床意思決定、医学研究、患者医療に革命をもたらす可能性がある。
LLMはますます医療システムに統合されているため、信頼性と倫理的展開を保証するために、いくつかの重要な課題に対処する必要がある。
これらの課題には、誤った情報を生成するモデル、意図しないデータ保持のリスクを持つプライバシ、堅牢性、敵対的攻撃に対する防御を必要とすること、公正性、臨床結果のバイアスに対処すること、説明可能性、透明性の高い意思決定を保証すること、安全、誤情報や医療ミスのリスクを軽減することが含まれる。
近年,LLMの信頼性を体系的に評価するベンチマークや評価フレームワークの開発が始まっている。
しかし、医療におけるLSMの信頼性は未熟であり、この領域に関する総合的な理解と今後の知見を提供する体系的なレビューが欠如している。
この調査は、医療のリスク軽減を目的とした、既存の方法論とソリューションに関する最近の研究の包括的概要を提供することで、このギャップを埋めるものである。
真理性,プライバシと安全性,堅牢性,公正性とバイアス,説明可能性といった重要な信頼性の側面に注目して,これらの問題が医療におけるLLMの信頼性と倫理的利用に与える影響を徹底的に分析する。
本稿では,現在進行中の取り組みに注目し,医療におけるLLMの安全かつ信頼性の高い展開を確実にするための今後の研究の方向性について考察する。
関連論文リスト
- Med-CoDE: Medical Critique based Disagreement Evaluation Framework [72.42301910238861]
医学的文脈における大きな言語モデル(LLM)の信頼性と精度は依然として重要な懸念点である。
現在の評価手法はロバスト性に欠けることが多く、LLMの性能を総合的に評価することができない。
我々は,これらの課題に対処するために,医療用LCMの特別設計評価フレームワークであるMed-CoDEを提案する。
論文 参考訳(メタデータ) (2025-04-21T16:51:11Z) - Can LLMs Support Medical Knowledge Imputation? An Evaluation-Based Perspective [1.4913052010438639]
我々は,Large Language Models (LLMs) を用いて,欠落した治療関係を計算した。
LLMは、知識増強において有望な能力を提供するが、医療知識計算におけるそれらの応用は、重大なリスクをもたらす。
本研究は, 臨床ガイドラインの不整合, 患者の安全性への潜在的なリスクなど, 重大な限界を指摘した。
論文 参考訳(メタデータ) (2025-03-29T02:52:17Z) - REVAL: A Comprehension Evaluation on Reliability and Values of Large Vision-Language Models [59.445672459851274]
REVALは、Large Vision-Language Modelsの textbfREliability と textbfVALue を評価するために設計された包括的なベンチマークである。
REVALには144K以上の画像テキストビジュアル質問回答(VQA)サンプルが含まれており、信頼性と価値の2つの主要なセクションで構成されている。
主流のオープンソースLVLMや,GPT-4oやGemini-1.5-Proといった著名なクローズドソースモデルを含む26のモデルを評価した。
論文 参考訳(メタデータ) (2025-03-20T07:54:35Z) - A Survey of Safety on Large Vision-Language Models: Attacks, Defenses and Evaluations [127.52707312573791]
この調査はLVLMの安全性を包括的に分析し、攻撃、防御、評価方法などの重要な側面をカバーする。
我々はこれらの相互関連コンポーネントを統合する統一フレームワークを導入し、LVLMの脆弱性を概観する。
我々は,最新のLVLMであるDeepseek Janus-Pro上で一連の安全性評価を行い,その結果を理論的に分析する。
論文 参考訳(メタデータ) (2025-02-14T08:42:43Z) - Large Language Models in Healthcare [4.119811542729794]
大規模言語モデル(LLM)は医療の変革を約束する。
彼らの成功には、臨床ニーズに合わせて厳格な開発、適応、評価戦略が必要である。
論文 参考訳(メタデータ) (2025-02-06T20:53:33Z) - A Mixed-Methods Evaluation of LLM-Based Chatbots for Menopause [7.156867036177255]
医療環境におけるLLM(Large Language Models)の統合は注目されている。
更年期関連問合せのためのLLMベースのチャットボットの性能について検討する。
本研究は,健康トピックに対する従来の評価指標の約束と限界を明らかにするものである。
論文 参考訳(メタデータ) (2025-02-05T19:56:52Z) - A Survey on the Honesty of Large Language Models [115.8458596738659]
正直とは、大きな言語モデル(LLM)を人間の価値と整合させる基本的な原則である。
将来性はあるものの、現在のLLMは依然として重大な不正直な行動を示す。
論文 参考訳(メタデータ) (2024-09-27T14:34:54Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
大規模言語モデル(LLM)は、金融、医療、法律の展望に革命をもたらしている。
我々は、医療における診断・治療方法論の強化、財務分析の革新、法的解釈・コンプライアンス戦略の精査におけるLCMの役割を強調した。
これらの分野におけるLLMアプリケーションの倫理を批判的に検討し、既存の倫理的懸念と透明で公平で堅牢なAIシステムの必要性を指摘した。
論文 参考訳(メタデータ) (2024-05-02T22:43:02Z) - A Comprehensive Survey on Evaluating Large Language Model Applications in the Medical Industry [2.1717945745027425]
大規模言語モデル(LLM)は、言語理解と生成の高度な能力で様々な産業に影響を与えている。
この包括的調査は、医療におけるLSMの広範な適用と必要な評価を概説する。
本調査は,臨床環境,医療用テキストデータ処理,研究,教育,公衆衛生への意識といった分野におけるLCM応用の詳細な分析を行うために構成されている。
論文 参考訳(メタデータ) (2024-04-24T09:55:24Z) - A Toolbox for Surfacing Health Equity Harms and Biases in Large Language Models [20.11590976578911]
大規模言語モデル(LLM)は、複雑な健康情報のニーズを満たすことを約束すると同時に、健康格差を悪化させる可能性がある。
エクイティ関連モデル失敗の信頼性評価は、ヘルスエクイティを促進するシステムを開発するための重要なステップである。
医学的問題に対するLLMによる長期的回答において、株式関連害を生じさせる可能性のあるバイアスを克服するためのリソースと方法論を提示する。
論文 参考訳(メタデータ) (2024-03-18T17:56:37Z) - MedSafetyBench: Evaluating and Improving the Medical Safety of Large Language Models [32.35118292932457]
まず,米国医学会の医療倫理原則に基づいて,大規模言語モデル(LLM)における医療安全の概念を定義した。
次に、この理解を活用して、LSMの医療安全を測定するために設計された最初のベンチマークデータセットであるMedSafetyBenchを導入します。
以上の結果から,医療用LLMは医療安全基準に適合せず,MedSafetyBenchを用いた微調整により医療安全を向上し,医療性能の維持が図られている。
論文 参考訳(メタデータ) (2024-03-06T14:34:07Z) - Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science [65.77763092833348]
大規模言語モデル(LLM)を利用したインテリジェントエージェントは、自律的な実験を行い、様々な分野にわたる科学的発見を促進する上で、大きな可能性を証明している。
彼らの能力は有望だが、これらのエージェントは安全性を慎重に考慮する必要がある新たな脆弱性も導入している。
本稿では,科学領域におけるLSMをベースとしたエージェントの脆弱性の徹底的な調査を行い,その誤用に伴う潜在的なリスクに光を当て,安全性対策の必要性を強調した。
論文 参考訳(メタデータ) (2024-02-06T18:54:07Z) - Medical Misinformation in AI-Assisted Self-Diagnosis: Development of a Method (EvalPrompt) for Analyzing Large Language Models [4.8775268199830935]
本研究は、自己診断ツールとしての大規模言語モデル(LLM)の有効性と、医療情報の拡散における役割を評価することを目的とする。
我々は,実世界の自己診断を模倣するオープンエンド質問を用いて,現実的な自己診断を模倣する文のドロップアウトを行い,情報不足を伴う現実的な自己診断を模倣する。
その結果, LLMの応答が不明確で不正確な場合が多いため, LLMの質素な機能を強調した。
論文 参考訳(メタデータ) (2023-07-10T21:28:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。