IPAD: Inverse Prompt for AI Detection -- A Robust and Explainable LLM-Generated Text Detector
- URL: http://arxiv.org/abs/2502.15902v1
- Date: Fri, 21 Feb 2025 19:41:32 GMT
- Title: IPAD: Inverse Prompt for AI Detection -- A Robust and Explainable LLM-Generated Text Detector
- Authors: Zheng Chen, Yushi Feng, Changyang He, Yue Deng, Hongxi Pu, Bo Li,
- Abstract summary: Large Language Models (LLMs) have attained human-level fluency in text generation, which complicates the distinguishing between human-written and LLM-generated texts.<n>Existing detectors exhibit poor robustness on out-of-distribution data and attacked data, which is critical for real-world scenarios.<n>We propose IPAD (Inverse Prompt for AI Detection), a novel framework consisting of a Prompt that identifies predicted prompts that could have generated the input text, and a Distinguisher that examines how well the input texts align with the predicted prompts.
- Score: 11.112793289424886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have attained human-level fluency in text generation, which complicates the distinguishing between human-written and LLM-generated texts. This increases the risk of misuse and highlights the need for reliable detectors. Yet, existing detectors exhibit poor robustness on out-of-distribution (OOD) data and attacked data, which is critical for real-world scenarios. Also, they struggle to provide explainable evidence to support their decisions, thus undermining the reliability. In light of these challenges, we propose IPAD (Inverse Prompt for AI Detection), a novel framework consisting of a Prompt Inverter that identifies predicted prompts that could have generated the input text, and a Distinguisher that examines how well the input texts align with the predicted prompts. We develop and examine two versions of Distinguishers. Empirical evaluations demonstrate that both Distinguishers perform significantly better than the baseline methods, with version2 outperforming baselines by 9.73% on in-distribution data (F1-score) and 12.65% on OOD data (AUROC). Furthermore, a user study is conducted to illustrate that IPAD enhances the AI detection trustworthiness by allowing users to directly examine the decision-making evidence, which provides interpretable support for its state-of-the-art detection results.
Related papers
- Who Writes What: Unveiling the Impact of Author Roles on AI-generated Text Detection [44.05134959039957]
We investigate how sociolinguistic attributes-gender, CEFR proficiency, academic field, and language environment-impact state-of-the-art AI text detectors.<n>Our results reveal significant biases: CEFR proficiency and language environment consistently affected detector accuracy, while gender and academic field showed detector-dependent effects.<n>These findings highlight the crucial need for socially aware AI text detection to avoid unfairly penalizing specific demographic groups.
arXiv Detail & Related papers (2025-02-18T07:49:31Z) - ExaGPT: Example-Based Machine-Generated Text Detection for Human Interpretability [62.285407189502216]
Detecting texts generated by Large Language Models (LLMs) could cause grave mistakes due to incorrect decisions.<n>We introduce ExaGPT, an interpretable detection approach grounded in the human decision-making process.<n>We show that ExaGPT massively outperforms prior powerful detectors by up to +40.9 points of accuracy at a false positive rate of 1%.
arXiv Detail & Related papers (2025-02-17T01:15:07Z) - ESPERANTO: Evaluating Synthesized Phrases to Enhance Robustness in AI Detection for Text Origination [1.8418334324753884]
This paper introduces back-translation as a novel technique for evading detection.
We present a model that combines these back-translated texts to produce a manipulated version of the original AI-generated text.
We evaluate this technique on nine AI detectors, including six open-source and three proprietary systems.
arXiv Detail & Related papers (2024-09-22T01:13:22Z) - Spotting AI's Touch: Identifying LLM-Paraphrased Spans in Text [61.22649031769564]
We propose a novel framework, paraphrased text span detection (PTD)
PTD aims to identify paraphrased text spans within a text.
We construct a dedicated dataset, PASTED, for paraphrased text span detection.
arXiv Detail & Related papers (2024-05-21T11:22:27Z) - OUTFOX: LLM-Generated Essay Detection Through In-Context Learning with
Adversarially Generated Examples [44.118047780553006]
OUTFOX is a framework that improves the robustness of LLM-generated-text detectors by allowing both the detector and the attacker to consider each other's output.
Experiments show that the proposed detector improves the detection performance on the attacker-generated texts by up to +41.3 points F1-score.
The detector shows a state-of-the-art detection performance: up to 96.9 points F1-score, beating existing detectors on non-attacked texts.
arXiv Detail & Related papers (2023-07-21T17:40:47Z) - RADAR: Robust AI-Text Detection via Adversarial Learning [69.5883095262619]
RADAR is based on adversarial training of a paraphraser and a detector.
The paraphraser's goal is to generate realistic content to evade AI-text detection.
RADAR uses the feedback from the detector to update the paraphraser, and vice versa.
arXiv Detail & Related papers (2023-07-07T21:13:27Z) - Red Teaming Language Model Detectors with Language Models [114.36392560711022]
Large language models (LLMs) present significant safety and ethical risks if exploited by malicious users.
Recent works have proposed algorithms to detect LLM-generated text and protect LLMs.
We study two types of attack strategies: 1) replacing certain words in an LLM's output with their synonyms given the context; 2) automatically searching for an instructional prompt to alter the writing style of the generation.
arXiv Detail & Related papers (2023-05-31T10:08:37Z) - MAGE: Machine-generated Text Detection in the Wild [82.70561073277801]
Large language models (LLMs) have achieved human-level text generation, emphasizing the need for effective AI-generated text detection.
We build a comprehensive testbed by gathering texts from diverse human writings and texts generated by different LLMs.
Despite challenges, the top-performing detector can identify 86.54% out-of-domain texts generated by a new LLM, indicating the feasibility for application scenarios.
arXiv Detail & Related papers (2023-05-22T17:13:29Z) - On the Possibilities of AI-Generated Text Detection [76.55825911221434]
We argue that as machine-generated text approximates human-like quality, the sample size needed for detection bounds increases.
We test various state-of-the-art text generators, including GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, and Llama-2-70B-Chat-HF, against detectors, including oBERTa-Large/Base-Detector, GPTZero.
arXiv Detail & Related papers (2023-04-10T17:47:39Z) - Can AI-Generated Text be Reliably Detected? [50.95804851595018]
Large Language Models (LLMs) perform impressively well in various applications.<n>The potential for misuse of these models in activities such as plagiarism, generating fake news, and spamming has raised concern about their responsible use.<n>We stress-test the robustness of these AI text detectors in the presence of an attacker.
arXiv Detail & Related papers (2023-03-17T17:53:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.