EHands: Quantum Protocol for Polynomial Computation on Real-Valued Encoded States
- URL: http://arxiv.org/abs/2502.15928v1
- Date: Fri, 21 Feb 2025 20:52:16 GMT
- Title: EHands: Quantum Protocol for Polynomial Computation on Real-Valued Encoded States
- Authors: Jan Balewski, Mercy G. Amankwah, E. Wes Bethel, Talita Perciano, Roel Van Beeumen,
- Abstract summary: EHands protocol defines a universal set of quantum operations for multivariable transformations on quantum processors.<n>We present a detailed implementation of $P_(x)$ using IBM's Heron-class quantum processors and an ideal Qiskit simulator.
- Score: 0.18641315013048299
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The novel constructive EHands protocol defines a universal set of quantum operations for multivariable polynomial transformations on quantum processors by introducing four basic subcircuits: multiplication, addition, negation, and parity flip, and by using expectation-value encoding (EVEN) to represent real numbers in quantum states. These elementary arithmetic operations can be systematically composed to compute degree-$d$ polynomials, $P_d(x)$, on a QPU. The resulting quantum circuit structure closely mirrors the stepwise evaluation of polynomials on a classical calculator, providing an intuitive and efficient approach to polynomial computation on quantum hardware. By enabling direct, predictable polynomial and nonlinear data transformations on a QPU, our method reduces dependence on classical post-processing in hybrid quantum-classical algorithms, enabling advancements in many quantum algorithms. The EHands quantum circuits are compact enough to deliver meaningful and accurate results on today's noisy quantum processors. We present a detailed implementation of $P_4(x)$ and report experimental results for polynomial approximations of common functions, obtained using IBM's Heron-class quantum processors and an ideal Qiskit simulator.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Optimization by Decoded Quantum Interferometry [43.55132675053983]
We introduce a quantum algorithm called Decoded Quantum Interferometry (DQI)<n>For approximating optimal fits to data over finite fields, DQI achieves a better approximation ratio than any time known to us.<n>We demonstrate this by benchmarking on an instance with over 30,000 variables.
arXiv Detail & Related papers (2024-08-15T17:47:42Z) - Quantum Signal Processing and Quantum Singular Value Transformation on $U(N)$ [8.264300525515097]
Quantum signal processing and quantum value transformation are powerful tools to implement transformations of block-encoded matrices on quantum computers.
We propose a framework which realizes multiples simultaneously from a block-encoded input.
We also give an algorithm to construct the quantum circuit that gives the desired transformation.
arXiv Detail & Related papers (2024-07-19T14:15:20Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Quantum signal processing over SU(N) [0.0]
Quantum signal processing (QSP) and the quantum singular value transformation (QSVT) are pivotal tools for simplifying the development of quantum algorithms.
These techniques leverage transformations on the eigenvalues or singular values of block-encoded matrices, achieved with the use of just one control qubit.
In this work, we extend the original QSP ansatz by introducing multiple control qubits.
arXiv Detail & Related papers (2023-11-07T12:43:47Z) - Hamiltonian Encoding for Quantum Approximate Time Evolution of Kinetic
Energy Operator [2.184775414778289]
The time evolution operator plays a crucial role in the precise computation of chemical experiments on quantum computers.
We have proposed a new encoding method, namely quantum approximate time evolution (QATE) for the quantum implementation of the kinetic energy operator.
arXiv Detail & Related papers (2023-10-05T05:25:38Z) - Modular quantum signal processing in many variables [0.0]
We show that modular multi-input-based QSP-based superoperators can be snapped together with LEGO-like ease at the level of the functions they apply.
We also provide a Python package for assembling gadgets and compiling them to circuits.
arXiv Detail & Related papers (2023-09-28T17:58:51Z) - Semantic embedding for quantum algorithms [0.0]
A need has developed for an assurance of the correctness of high-level quantum algorithmic reasoning.
Many quantum algorithms have been unified and improved using quantum signal processing (QSP) and quantum singular value transformation (QSVT)
We show that QSP/QSVT can be treated and combined modularly, purely in terms of the functional transforms they embed.
We also identify existing quantum algorithms whose use of semantic embedding is implicit, spanning from distributed search to soundness in quantum cryptography.
arXiv Detail & Related papers (2023-04-27T17:55:40Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Efficient phase-factor evaluation in quantum signal processing [1.3614427997190908]
Quantum signal processing (QSP) is a powerful quantum algorithm to exactly implement matrixs on quantum computers.
There is so far no classically stable algorithm allowing computation of the phase factors that are needed to build QSP circuits.
We present here an optimization based method that can accurately compute the phase factors using standard double precision arithmetic operations.
arXiv Detail & Related papers (2020-02-26T17:23:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.