Space-O-RAN: Enabling Intelligent, Open, and Interoperable Non Terrestrial Networks in 6G
- URL: http://arxiv.org/abs/2502.15936v2
- Date: Mon, 09 Jun 2025 11:59:04 GMT
- Title: Space-O-RAN: Enabling Intelligent, Open, and Interoperable Non Terrestrial Networks in 6G
- Authors: Eduardo Baena, Paolo Testolina, Michele Polese, Dimitrios Koutsonikolas, Josep Jornet, Tommaso Melodia,
- Abstract summary: This paper introduces Space-O-RAN, a distributed control architecture that extends Open RAN principles into satellite constellations through hierarchical, closed-loop control.<n>Lightweight glspldapp operate onboard satellites, enabling real-time functions like scheduling and beam steering without relying on persistent ground access.<n>A key enabler is the dynamic mapping of the O-RAN interfaces to satellite links, supporting adaptive signaling under varying conditions.
- Score: 16.472121677010268
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Satellite networks are rapidly evolving, yet most \glspl{ntn} remain isolated from terrestrial orchestration frameworks. Their control architectures are typically monolithic and static, limiting their adaptability to dynamic traffic, topology changes, and mission requirements. These constraints lead to inefficient spectrum use and underutilized network capacity. Although \gls{ai} promises automation, its deployment in orbit is limited by computing, energy, and connectivity limitations. This paper introduces Space-O-RAN, a distributed control architecture that extends Open RAN principles into satellite constellations through hierarchical, closed-loop control. Lightweight \glspl{dapp} operate onboard satellites, enabling real-time functions like scheduling and beam steering without relying on persistent ground access. Cluster-level coordination is managed via \glspl{spaceric}, which leverage low-latency \glspl{isl} for autonomous decisions in orbit. Strategic tasks, including AI training and policy updates, are transferred to terrestrial platforms \glspl{smo} using digital twins and feeder links. A key enabler is the dynamic mapping of the O-RAN interfaces to satellite links, supporting adaptive signaling under varying conditions. Simulations using the Starlink topology validate the latency bounds that inform this architectural split, demonstrating both feasibility and scalability for autonomous satellite RAN operations.
Related papers
- Constellation as a Service: Tailored Connectivity Management in Direct-Satellite-to-Device Networks [51.982277327318656]
Direct-satellite-to-device (DS2D) communication is emerging as a promising solution for global mobile service extension.<n>The challenge of managing DS2D connectivity for multi-constellations becomes outstanding.<n>This article proposes a Constellation as a Service framework, which treats the entire multi-constellation infrastructure as a shared resource pool.
arXiv Detail & Related papers (2025-07-01T16:06:29Z) - Agentic Semantic Control for Autonomous Wireless Space Networks: Extending Space-O-RAN with MCP-Driven Distributed Intelligence [15.037873741966921]
lunar surface operations impose stringent requirements on wireless communication systems.<n>We propose a novel extension incorporating a semantic agentic layer enabled by the Model Context Protocol (MCP) and Agent-to-Agent (A2A) communication protocols.
arXiv Detail & Related papers (2025-06-12T17:35:36Z) - Satellite Federated Fine-Tuning for Foundation Models in Space Computing Power Networks [42.14666281406915]
We propose a satellite-ground collaborative federated fine-tuning framework.<n>We introduce tailored communication strategies that integrate both communication and computing resources.<n> Simulation results demonstrate significant reductions in training time with improvements of approximately 33%.
arXiv Detail & Related papers (2025-04-14T16:52:34Z) - Satellite Edge Artificial Intelligence with Large Models: Architectures and Technologies [43.24943201324192]
Extreme weather nowcasting, disaster monitoring, and battlefield surveillance require realtime data processing.
Satellite edge large AI model (LAM) involves both the training (i.e., finetuning) and inference phases.
LAM deployment in resource-constrained space networks with time-varying topologies.
arXiv Detail & Related papers (2025-04-02T12:25:57Z) - Distributed satellite information networks: Architecture, enabling technologies, and trends [56.747473208256174]
The distributed satellite information networks (DSIN) have emerged as an innovative architecture, bridging information gaps across diverse satellite systems.<n>This survey first provides a profound discussion about innovative network architectures of DSIN.<n>The DSIN faces challenges from network heterogeneity, unpredictable channel dynamics, sparse resources, and decentralized collaboration frameworks.
arXiv Detail & Related papers (2024-12-17T06:44:05Z) - FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
Decentralized training faces significant challenges regarding system design and efficiency.
We present FusionLLM, a decentralized training system designed and implemented for training large deep neural networks (DNNs)
We show that our system and method can achieve 1.45 - 9.39x speedup compared to baseline methods while ensuring convergence.
arXiv Detail & Related papers (2024-10-16T16:13:19Z) - SatFed: A Resource-Efficient LEO Satellite-Assisted Heterogeneous Federated Learning Framework [19.59862482196897]
We propose SatFed, a resource-efficient satellite-assisted heterogeneous FL framework.
SatFed implements freshness-based model prioritization queues to optimize the use of highly constrained satellite-ground bandwidth.
Experiments with real-world LEO satellite networks demonstrate that SatFed achieves superior performance and robustness compared to state-of-the-art benchmarks.
arXiv Detail & Related papers (2024-09-20T13:44:00Z) - Hierarchical Learning and Computing over Space-Ground Integrated Networks [40.19542938629252]
We propose a hierarchical learning and computing framework to provide global aggregation services for locally trained models on ground IoT devices.
We formulate a network energy problem for model aggregation, which turns out to be a Directed Steiner Tree (DST) problem.
We propose a topologyaware energy-efficient routing (TAEER) algorithm to solve the DST problem by finding a minimum spanning arborescence on a substitute directed graph.
arXiv Detail & Related papers (2024-08-26T09:05:43Z) - Collaborative Ground-Space Communications via Evolutionary Multi-objective Deep Reinforcement Learning [113.48727062141764]
We propose a distributed collaborative beamforming (DCB)-based uplink communication paradigm for enabling ground-space direct communications.
DCB treats the terminals that are unable to establish efficient direct connections with the low Earth orbit (LEO) satellites as distributed antennas.
We propose an evolutionary multi-objective deep reinforcement learning algorithm to obtain the desirable policies.
arXiv Detail & Related papers (2024-04-11T03:13:02Z) - Satellite Federated Edge Learning: Architecture Design and Convergence Analysis [47.057886812985984]
This paper introduces a novel FEEL algorithm, named FEDMEGA, tailored to mega-constellation networks.
By integrating inter-satellite links (ISL) for intra-orbit model aggregation, the proposed algorithm significantly reduces the usage of low data rate and intermittent GSL.
Our proposed method includes a ring all-reduce based intra-orbit aggregation mechanism, coupled with a network flow-based transmission scheme for global model aggregation.
arXiv Detail & Related papers (2024-04-02T11:59:58Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - Olive Branch Learning: A Topology-Aware Federated Learning Framework for
Space-Air-Ground Integrated Network [19.059950250921926]
Training AI models centrally with the assistance of SAGIN faces the challenges of highly constrained network topology, inefficient data transmission, and privacy issues.
We first propose a novel topology-aware federated learning framework for the SAGIN, namely Olive Branch Learning (OBL)
We extend our OBL framework and CNASA algorithm to adapt to more complex multi-orbit satellite networks.
arXiv Detail & Related papers (2022-12-02T14:51:42Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
Terahertz (THz) wireless networks are expected to catalyze the beyond fifth generation (B5G) era.
To satisfy the ultra-reliability and low-latency demands of several B5G applications, novel mobility management approaches are required.
This article presents a holistic MAC layer approach that enables intelligent user association and resource allocation, as well as flexible and adaptive mobility management.
arXiv Detail & Related papers (2022-08-17T03:00:24Z) - Artificial Intelligence Techniques for Next-Generation Mega Satellite
Networks [37.87439415970645]
This article introduces the application of AI techniques for integrated terrestrial satellite networks, particularly massive satellite network communications.
It details the unique features of massive satellite networks, and the overarching challenges concomitant with their integration into the current communication infrastructure.
This entails applying AI for forecasting the highly dynamic radio channel, spectrum sensing and classification, signal detection and demodulation, inter-satellite and satellite access network optimization, and network security.
arXiv Detail & Related papers (2022-06-02T13:56:32Z) - Machine Learning-Based User Scheduling in Integrated
Satellite-HAPS-Ground Networks [82.58968700765783]
Integrated space-air-ground networks promise to offer a valuable solution space for empowering the sixth generation of communication networks (6G)
This paper showcases the prospects of machine learning in the context of user scheduling in integrated space-air-ground communications.
arXiv Detail & Related papers (2022-05-27T13:09:29Z) - Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data [79.96177511319713]
Current maritime communications mainly rely on satellites having meager transmission resources, hence suffering from poorer performance than modern terrestrial wireless networks.
With the growth of transcontinental air traffic, the promising concept of aeronautical ad hoc networking relying on commercial passenger airplanes is potentially capable of enhancing satellite-based maritime communications via air-to-ground and multi-hop air-to-air links.
We propose space-air-ground integrated networks (SAGINs) for supporting ubiquitous maritime communications, where the low-earth-orbit satellite constellations, passenger airplanes, terrestrial base stations, ships, respectively, serve as the space-, air-,
arXiv Detail & Related papers (2021-10-28T14:12:10Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
This paper presents a machine learning strategy that tackles a distributed optimization task in a wireless network with an arbitrary number of randomly interconnected nodes.
We develop a flexible deep neural network formalism termed distributed message-passing neural network (DMPNN) with forward and backward computations independent of the network topology.
arXiv Detail & Related papers (2021-06-15T09:03:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.