Echo: A Large Language Model with Temporal Episodic Memory
- URL: http://arxiv.org/abs/2502.16090v1
- Date: Sat, 22 Feb 2025 05:25:20 GMT
- Title: Echo: A Large Language Model with Temporal Episodic Memory
- Authors: WenTao Liu, Ruohua Zhang, Aimin Zhou, Feng Gao, JiaLi Liu,
- Abstract summary: We introduce Echo, a large language model enhanced with temporal episodic memory.<n>Our experiments demonstrate that Echo significantly outperforms state-of-the-art LLMs on EM-Test.<n>We will open-source all datasets, code, and model weights.
- Score: 10.576032603739675
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Research on large language models (LLMs) has shown remarkable performance in domains such as mathematics, programming, and literary creation. However, most studies have focused on semantic memory-based question answering, neglecting LLMs' potential to handle episodic memory (EM)-related queries. This oversight has led to suboptimal performance in applications requiring EM, including emotional companionship, personal AI assistants, and AI teachers. To address this gap, we introduce Echo, a LLM enhanced with temporal episodic memory. We propose a Multi-Agent Data Generation Framework that guides the model in generating multi-turn, complex scenario episodic memory dialogue data (EM-Train). Temporal information is innovatively incorporated into the LLM training process, and Echo is trained using the EM-Train. Furthermore, We develop an EM-Test benchmark specifically designed to evaluate LLMs' episodic memory capabilities. The EM-Test assesses performance across various time spans and difficulty levels, providing a comprehensive evaluation of multi-turn episodic memory dialogues. Our experiments demonstrate that Echo significantly outperforms state-of-the-art LLMs on EM-Test. Additionally, a qualitative analysis reveals Echo's potential to exhibit human-like episodic memory capabilities. We will open-source all datasets, code, and model weights.
Related papers
- If an LLM Were a Character, Would It Know Its Own Story? Evaluating Lifelong Learning in LLMs [55.8331366739144]
We introduce LIFESTATE-BENCH, a benchmark designed to assess lifelong learning in large language models (LLMs)
Our fact checking evaluation probes models' self-awareness, episodic memory retrieval, and relationship tracking, across both parametric and non-parametric approaches.
arXiv Detail & Related papers (2025-03-30T16:50:57Z) - From Tools to Teammates: Evaluating LLMs in Multi-Session Coding Interactions [9.344348861402928]
MemoryCode is a dataset designed to test Large Language Models' ability to track and execute simple coding instructions amid irrelevant information.
Our results highlight a fundamental limitation of current LLMs, restricting their ability to collaborate effectively in long interactions.
arXiv Detail & Related papers (2025-02-19T14:58:04Z) - Episodic Memories Generation and Evaluation Benchmark for Large Language Models [7.660368798066376]
We argue that integrating episodic memory capabilities into Large Language Models is essential for advancing AI towards human-like cognition.<n>We develop a structured approach to represent episodic events, encapsulating temporal and spatial contexts, involved entities, and detailed descriptions.<n>We synthesize a unique episodic memory benchmark, free from contamination, and release open source code and datasets to assess LLM performance.
arXiv Detail & Related papers (2025-01-21T02:16:13Z) - InternLM-XComposer2.5-OmniLive: A Comprehensive Multimodal System for Long-term Streaming Video and Audio Interactions [104.90258030688256]
This project introduces disentangled streaming perception, reasoning, and memory mechanisms, enabling real-time interaction with streaming video and audio input.
This project simulates human-like cognition, enabling multimodal large language models to provide continuous and adaptive service over time.
arXiv Detail & Related papers (2024-12-12T18:58:30Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Human-like Episodic Memory for Infinite Context LLMs [13.211261438927798]
Large language models (LLMs) have shown remarkable capabilities, but still struggle with processing extensive contexts.
In this work, we introduce EM-LLM, a novel approach that integrates key aspects of human episodic memory and event cognition into LLMs.
EM-LLM organises sequences of tokens into coherent episodic events using a combination of Bayesian surprise and graph-theoretic boundary refinement.
arXiv Detail & Related papers (2024-07-12T17:34:03Z) - DoraemonGPT: Toward Understanding Dynamic Scenes with Large Language Models (Exemplified as A Video Agent) [73.10899129264375]
This paper explores DoraemonGPT, a comprehensive and conceptually elegant system driven by LLMs to understand dynamic scenes.
Given a video with a question/task, DoraemonGPT begins by converting the input video into a symbolic memory that stores task-related attributes.
We extensively evaluate DoraemonGPT's effectiveness on three benchmarks and several in-the-wild scenarios.
arXiv Detail & Related papers (2024-01-16T14:33:09Z) - Empowering Working Memory for Large Language Model Agents [9.83467478231344]
This paper explores the potential of applying cognitive psychology's working memory frameworks to large language models (LLMs)
An innovative model is proposed incorporating a centralized Working Memory Hub and Episodic Buffer access to retain memories across episodes.
This architecture aims to provide greater continuity for nuanced contextual reasoning during intricate tasks and collaborative scenarios.
arXiv Detail & Related papers (2023-12-22T05:59:00Z) - In-context Autoencoder for Context Compression in a Large Language Model [70.7621953091318]
We propose the In-context Autoencoder (ICAE) to compress a long context into short compact memory slots.
ICAE is first pretrained using both autoencoding and language modeling objectives on massive text data.
arXiv Detail & Related papers (2023-07-13T17:59:21Z) - RET-LLM: Towards a General Read-Write Memory for Large Language Models [53.288356721954514]
RET-LLM is a novel framework that equips large language models with a general write-read memory unit.
Inspired by Davidsonian semantics theory, we extract and save knowledge in the form of triplets.
Our framework exhibits robust performance in handling temporal-based question answering tasks.
arXiv Detail & Related papers (2023-05-23T17:53:38Z) - An Iterative Optimizing Framework for Radiology Report Summarization with ChatGPT [80.33783969507458]
The 'Impression' section of a radiology report is a critical basis for communication between radiologists and other physicians.
Recent studies have achieved promising results in automatic impression generation using large-scale medical text data.
These models often require substantial amounts of medical text data and have poor generalization performance.
arXiv Detail & Related papers (2023-04-17T17:13:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.