論文の概要: Connected Hidden Neurons (CHNNet): An Artificial Neural Network for
Rapid Convergence
- arxiv url: http://arxiv.org/abs/2305.10468v2
- Date: Sun, 24 Sep 2023 08:06:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-27 02:52:17.671770
- Title: Connected Hidden Neurons (CHNNet): An Artificial Neural Network for
Rapid Convergence
- Title(参考訳): Connected Hidden Neurons (CHNNet): 高速収束のためのニューラルネットワーク
- Authors: Rafiad Sadat Shahir, Zayed Humayun, Mashrufa Akter Tamim, Shouri Saha,
Md. Golam Rabiul Alam
- Abstract要約: 我々は,同じ隠蔽層に隠されたニューロンが相互に相互に結合し,急速に収束する,より堅牢な人工知能ニューラルネットワークモデルを提案する。
深層ネットワークにおける提案モデルの実験研究により,従来のフィードフォワードニューラルネットワークと比較して,モデルが顕著に収束率を上昇させることを示した。
- 参考スコア(独自算出の注目度): 0.6218519716921521
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Despite artificial neural networks being inspired by the functionalities of
biological neural networks, unlike biological neural networks, conventional
artificial neural networks are often structured hierarchically, which can
impede the flow of information between neurons as the neurons in the same layer
have no connections between them. Hence, we propose a more robust model of
artificial neural networks where the hidden neurons, residing in the same
hidden layer, are interconnected that leads to rapid convergence. With the
experimental study of our proposed model in deep networks, we demonstrate that
the model results in a noticeable increase in convergence rate compared to the
conventional feed-forward neural network.
- Abstract(参考訳): ニューラルネットワークは、生物学的ニューラルネットワークの機能にインスパイアされたものの、従来のニューラルネットワークは階層的に構築されることが多く、同じ層のニューロンがそれらの間の接続を持たないため、ニューロン間の情報の流れを阻害する可能性がある。
そこで本研究では,同じ隠れ層に存在する隠れたニューロンが相互に結合し,急速に収束する人工ニューラルネットワークのより頑健なモデルを提案する。
深層ネットワークにおける提案モデルの実験研究により,従来のフィードフォワードニューラルネットワークと比較して,モデルが顕著な収束率の向上をもたらすことを示した。
関連論文リスト
- Web Neural Network with Complete DiGraphs [8.2727500676707]
現在のニューラルネットワークは、神経細胞、畳み込み、再発などの脳構造を曖昧に模倣する構造を持っている。
本稿では、ニューロン接続にサイクルを導入し、他のネットワーク層でよく見られるシーケンシャルな性質を除去することにより、新たな構造特性を付加する。
さらに、モデルには、ニューラルネットワークにインスパイアされた連続的な入力と出力があり、ネットワークは最終結果を返すのではなく、分類のプロセスを学ぶことができる。
論文 参考訳(メタデータ) (2024-01-07T05:12:10Z) - Expressivity of Spiking Neural Networks [15.181458163440634]
本研究では,ニューロンの発射時間内に情報を符号化したスパイクニューラルネットワークの能力について検討する。
ReLUネットワークとは対照的に、スパイクニューラルネットワークは連続関数と不連続関数の両方を実現することができる。
論文 参考訳(メタデータ) (2023-08-16T08:45:53Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
神経の持続性に影響を与える主な要因は,ネットワークの重みのばらつきと大きな重みの空間集中である。
単一層ではなく,ニューラルネットワーク全体へのニューラルネットワークの持続性に基づくフィルタリングの拡張を提案する。
これにより、ネットワーク内の永続的なパスを暗黙的に取り込み、分散に関連する問題を緩和するディープグラフの永続性測定が得られます。
論文 参考訳(メタデータ) (2023-07-20T13:34:11Z) - Mitigating Communication Costs in Neural Networks: The Role of Dendritic
Nonlinearity [28.243134476634125]
本研究では,ニューラルネットワークにおける非線形デンドライトの重要性について検討した。
その結果,樹状構造の統合はモデル容量と性能を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2023-06-21T00:28:20Z) - Dive into the Power of Neuronal Heterogeneity [8.6837371869842]
進化戦略(ES)を用いて、スパイキングニューラルネットワーク(SNN)を最適化し、ランダムネットワークにおける異種ニューロンのより堅牢な最適化を実現するためのバックプロパゲーションベースの手法が直面する課題を示す。
膜時間定数は神経異質性において重要な役割を担っており、その分布は生物学的実験で観察されたものと類似している。
論文 参考訳(メタデータ) (2023-05-19T07:32:29Z) - Functional Connectome: Approximating Brain Networks with Artificial
Neural Networks [1.952097552284465]
訓練されたディープニューラルネットワークは、合成生物学的ネットワークによって実行される計算を高精度に捉えることができることを示す。
訓練されたディープニューラルネットワークは、新しい環境でゼロショットの一般化を実行可能であることを示す。
本研究は, システム神経科学における新規かつ有望な方向性を明らかにする。
論文 参考訳(メタデータ) (2022-11-23T13:12:13Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
NTKの研究は典型的なニューラルネットワークアーキテクチャに特化しているが、アダマール製品(NNs-Hp)を用いたニューラルネットワークには不完全である。
本研究では,ニューラルネットワークの特別なクラスであるNNs-Hpに対する有限幅Kの定式化を導出する。
我々は,カーネル回帰予測器と関連するNTKとの等価性を証明し,NTKの適用範囲を拡大する。
論文 参考訳(メタデータ) (2022-09-16T06:36:06Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Exploiting Heterogeneity in Operational Neural Networks by Synaptic
Plasticity [87.32169414230822]
最近提案されたネットワークモデルであるオペレーショナルニューラルネットワーク(ONN)は、従来の畳み込みニューラルネットワーク(CNN)を一般化することができる。
本研究では, 生体ニューロンにおける本質的な学習理論を示すSynaptic Plasticityパラダイムに基づいて, ネットワークの隠蔽ニューロンに対する最強演算子集合の探索に焦点をあてる。
高難易度問題に対する実験結果から、神経細胞や層が少なくても、GISベースのONNよりも優れた学習性能が得られることが示された。
論文 参考訳(メタデータ) (2020-08-21T19:03:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。