NeuronSeek: On Stability and Expressivity of Task-driven Neurons
- URL: http://arxiv.org/abs/2506.15715v1
- Date: Sun, 01 Jun 2025 01:36:27 GMT
- Title: NeuronSeek: On Stability and Expressivity of Task-driven Neurons
- Authors: Hanyu Pei, Jing-Xiao Liao, Qibin Zhao, Ting Gao, Shijun Zhang, Xiaoge Zhang, Feng-Lei Fan,
- Abstract summary: Prototyping task-driven neurons (referred to as NeuronSeek) employs symbolic regression (SR) to discover the optimal neuron formulation.<n>This work replaces symbolic regression with tensor decomposition (TD) to discover optimal neuronal formulations.<n>We establish theoretical guarantees that modifying the aggregation functions with common activation functions can empower a network with a fixed number of parameters to approximate any continuous function with an arbitrarily small error.
- Score: 19.773883759021764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Drawing inspiration from our human brain that designs different neurons for different tasks, recent advances in deep learning have explored modifying a network's neurons to develop so-called task-driven neurons. Prototyping task-driven neurons (referred to as NeuronSeek) employs symbolic regression (SR) to discover the optimal neuron formulation and construct a network from these optimized neurons. Along this direction, this work replaces symbolic regression with tensor decomposition (TD) to discover optimal neuronal formulations, offering enhanced stability and faster convergence. Furthermore, we establish theoretical guarantees that modifying the aggregation functions with common activation functions can empower a network with a fixed number of parameters to approximate any continuous function with an arbitrarily small error, providing a rigorous mathematical foundation for the NeuronSeek framework. Extensive empirical evaluations demonstrate that our NeuronSeek-TD framework not only achieves superior stability, but also is competitive relative to the state-of-the-art models across diverse benchmarks. The code is available at https://github.com/HanyuPei22/NeuronSeek.
Related papers
- NOBLE -- Neural Operator with Biologically-informed Latent Embeddings to Capture Experimental Variability in Biological Neuron Models [68.89389652724378]
NOBLE is a neural operator framework that learns a mapping from a continuous frequency-modulated embedding of interpretable neuron features to the somatic voltage response induced by current injection.<n>It predicts distributions of neural dynamics accounting for the intrinsic experimental variability.<n>NOBLE is the first scaled-up deep learning framework validated on real experimental data.
arXiv Detail & Related papers (2025-06-05T01:01:18Z) - NeurFlow: Interpreting Neural Networks through Neuron Groups and Functional Interactions [16.00223741620103]
We propose a novel framework that transitions the focus from analyzing individual neurons to investigating groups of neurons.<n>Our automated framework, NeurFlow, first identifies core neurons and clusters them into groups based on shared functional relationships.
arXiv Detail & Related papers (2025-02-22T06:01:03Z) - Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
It has long been known in both neuroscience and AI that ''binding'' between neurons leads to a form of competitive learning where representations are compressed in order to represent more abstract concepts in deeper layers of the network.<n>We introduce Artificial rethinking together with arbitrary connectivity designs such as fully connected convolutional, or attentive mechanisms.<n>We show that this idea provides performance improvements across a wide spectrum of tasks such as unsupervised object discovery, adversarial robustness, uncertainty, quantification, and reasoning.
arXiv Detail & Related papers (2024-10-17T17:47:54Z) - No One-Size-Fits-All Neurons: Task-based Neurons for Artificial Neural Networks [25.30801109401654]
Since the human brain is a task-based neuron user, can the artificial network design go from the task-based architecture design to the task-based neuron design?
We propose a two-step framework for prototyping task-based neurons.
Experiments show that the proposed task-based neuron design is not only feasible but also delivers competitive performance over other state-of-the-art models.
arXiv Detail & Related papers (2024-05-03T09:12:46Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Learning to Act through Evolution of Neural Diversity in Random Neural
Networks [9.387749254963595]
In most artificial neural networks (ANNs), neural computation is abstracted to an activation function that is usually shared between all neurons.
We propose the optimization of neuro-centric parameters to attain a set of diverse neurons that can perform complex computations.
arXiv Detail & Related papers (2023-05-25T11:33:04Z) - Dive into the Power of Neuronal Heterogeneity [8.6837371869842]
We show the challenges faced by backpropagation-based methods in optimizing Spiking Neural Networks (SNNs) and achieve more robust optimization of heterogeneous neurons in random networks using an Evolutionary Strategy (ES)
We find that membrane time constants play a crucial role in neural heterogeneity, and their distribution is similar to that observed in biological experiments.
arXiv Detail & Related papers (2023-05-19T07:32:29Z) - Supervised Feature Selection with Neuron Evolution in Sparse Neural
Networks [17.12834153477201]
We propose a novel resource-efficient supervised feature selection method using sparse neural networks.
By gradually pruning the uninformative features from the input layer of a sparse neural network trained from scratch, NeuroFS derives an informative subset of features efficiently.
NeuroFS achieves the highest ranking-based score among the considered state-of-the-art supervised feature selection models.
arXiv Detail & Related papers (2023-03-10T17:09:55Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
In the brain, information is encoded, transmitted and used to inform behaviour.
Neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain.
arXiv Detail & Related papers (2022-12-08T15:16:04Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
Small neural networks with a constrained number of trainable parameters, can be suitable resource-efficient candidates for many simple tasks.
We explore the diversity of the neurons within the hidden layer during the learning process.
We analyze how the diversity of the neurons affects predictions of the model.
arXiv Detail & Related papers (2021-09-20T15:12:16Z) - Factorized Neural Processes for Neural Processes: $K$-Shot Prediction of
Neural Responses [9.792408261365043]
We develop a Factorized Neural Process to infer a neuron's tuning function from a small set of stimulus-response pairs.
We show on simulated responses that the predictions and reconstructed receptive fields from the Neural Process approach ground truth with increasing number of trials.
We believe this novel deep learning systems identification framework will facilitate better real-time integration of artificial neural network modeling into neuroscience experiments.
arXiv Detail & Related papers (2020-10-22T15:43:59Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.