ZIA: A Theoretical Framework for Zero-Input AI
- URL: http://arxiv.org/abs/2502.16124v1
- Date: Sat, 22 Feb 2025 07:42:05 GMT
- Title: ZIA: A Theoretical Framework for Zero-Input AI
- Authors: Aditi De, NeuroBits Labs,
- Abstract summary: Zero-Input AI (ZIA) introduces a novel framework for human-computer interaction by enabling proactive intent prediction without explicit user commands.<n>It integrates gaze tracking, bio-signals (EEG, heart rate), and contextual data (time, location, usage history) into a multi-modal model for real-time inference.<n>ZIA provides a scalable, privacy-preserving framework for accessibility, healthcare, and consumer applications, advancing AI toward anticipatory intelligence.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Zero-Input AI (ZIA) introduces a novel framework for human-computer interaction by enabling proactive intent prediction without explicit user commands. It integrates gaze tracking, bio-signals (EEG, heart rate), and contextual data (time, location, usage history) into a multi-modal model for real-time inference, targeting <100 ms latency. The proposed architecture employs a transformer-based model with cross-modal attention, variational Bayesian inference for uncertainty estimation, and reinforcement learning for adaptive optimization. To support deployment on edge devices (CPUs, TPUs, NPUs), ZIA utilizes quantization, weight pruning, and linear attention to reduce complexity from quadratic to linear with sequence length. Theoretical analysis establishes an information-theoretic bound on prediction error and demonstrates how multi-modal fusion improves accuracy over single-modal approaches. Expected performance suggests 85-90% accuracy with EEG integration and 60-100 ms inference latency. ZIA provides a scalable, privacy-preserving framework for accessibility, healthcare, and consumer applications, advancing AI toward anticipatory intelligence.
Related papers
- Data Scaling Laws for End-to-End Autonomous Driving [83.85463296830743]
We evaluate the performance of a simple end-to-end driving architecture on internal driving datasets ranging in size from 16 to 8192 hours.
Specifically, we investigate how much additional training data is needed to achieve a target performance gain.
arXiv Detail & Related papers (2025-04-06T03:23:48Z) - Cloud Computing Energy Consumption Prediction Based on Kernel Extreme Learning Machine Algorithm Improved by Vector Weighted Average Algorithm [11.657154571216234]
This study proposes a novel Vector weighted average algorithm (VWAA) with kernel extreme learning machine (KELM) to enhance energy consumption prediction in cloud computing environments.
Experimental results demonstrate the superior performance of VWAA-KELM: 94.7% of test set prediction errors fall within [0, 50] units, with only three cases exceeding 100 units.
The proposed hybrid framework has broader applications in Internet of Things (IoT) and edge computing, supporting real-time energy management and intelligent resource allocation.
arXiv Detail & Related papers (2025-03-06T04:52:50Z) - Neural Conformal Control for Time Series Forecasting [54.96087475179419]
We introduce a neural network conformal prediction method for time series that enhances adaptivity in non-stationary environments.<n>Our approach acts as a neural controller designed to achieve desired target coverage, leveraging auxiliary multi-view data with neural network encoders.<n>We empirically demonstrate significant improvements in coverage and probabilistic accuracy, and find that our method is the only one that combines good calibration with consistency in prediction intervals.
arXiv Detail & Related papers (2024-12-24T03:56:25Z) - Active Inference on the Edge: A Design Study [5.815300670677979]
Active Inference (ACI) is a concept from neuroscience that describes how the brain constantly predicts and evaluates sensory information to decrease long-term surprise.
We show how our ACI agent was able to quickly and traceably solve an optimization problem while fulfilling requirements.
arXiv Detail & Related papers (2023-11-17T16:03:04Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Probabilistic MIMO U-Net: Efficient and Accurate Uncertainty Estimation
for Pixel-wise Regression [1.4528189330418977]
Uncertainty estimation in machine learning is paramount for enhancing the reliability and interpretability of predictive models.
We present an adaptation of the Multiple-Input Multiple-Output (MIMO) framework for pixel-wise regression tasks.
arXiv Detail & Related papers (2023-08-14T22:08:28Z) - Design and Prototyping Distributed CNN Inference Acceleration in Edge
Computing [85.74517957717363]
HALP accelerates inference by designing a seamless collaboration among edge devices (EDs) in Edge Computing.
Experiments show that the distributed inference HALP achieves 1.7x inference acceleration for VGG-16.
It is shown that the model selection with distributed inference HALP can significantly improve service reliability.
arXiv Detail & Related papers (2022-11-24T19:48:30Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - On Efficient Uncertainty Estimation for Resource-Constrained Mobile
Applications [0.0]
Predictive uncertainty supplements model predictions and enables improved functionality of downstream tasks.
We tackle this problem by building upon Monte Carlo Dropout (MCDO) models using the Axolotl framework.
We conduct experiments on (1) a multi-class classification task using the CIFAR10 dataset, and (2) a more complex human body segmentation task.
arXiv Detail & Related papers (2021-11-11T22:24:15Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.