論文の概要: Robustness and Cybersecurity in the EU Artificial Intelligence Act
- arxiv url: http://arxiv.org/abs/2502.16184v1
- Date: Sat, 22 Feb 2025 11:12:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:59:42.156493
- Title: Robustness and Cybersecurity in the EU Artificial Intelligence Act
- Title(参考訳): EU人工知能法におけるロバスト性とサイバーセキュリティ
- Authors: Henrik Nolte, Miriam Rateike, Michèle Finck,
- Abstract要約: EU人工知能法(英語: EU Artificial Intelligence Act、AIA)は、異なるタイプのAIシステムに対して異なる法的原則を定めている。
以前の研究はこれらの原則のいくつかを明確にしようとしたが、ロバストネスとサイバーセキュリティにはほとんど注意が払われていない。
リスクの高いAIシステムに対するロバストネスとサイバーセキュリティに関連する条項における法的課題と欠点を特定します。
- 参考スコア(独自算出の注目度): 1.433758865948252
- License:
- Abstract: The EU Artificial Intelligence Act (AIA) establishes different legal principles for different types of AI systems. While prior work has sought to clarify some of these principles, little attention has been paid to robustness and cybersecurity. This paper aims to fill this gap. We identify legal challenges and shortcomings in provisions related to robustness and cybersecurity for high-risk AI systems (Art. 15 AIA) and general-purpose AI models (Art. 55 AIA). We show that robustness and cybersecurity demand resilience against performance disruptions. Furthermore, we assess potential challenges in implementing these provisions in light of recent advancements in the machine learning (ML) literature. Our analysis informs efforts to develop harmonized standards, guidelines by the European Commission, as well as benchmarks and measurement methodologies under Art. 15(2) AIA. With this, we seek to bridge the gap between legal terminology and ML research, fostering a better alignment between research and implementation efforts.
- Abstract(参考訳): EU人工知能法(英語: EU Artificial Intelligence Act、AIA)は、異なるタイプのAIシステムに対して異なる法的原則を定めている。
以前の研究はこれらの原則のいくつかを明確にしようとしたが、ロバストネスとサイバーセキュリティにはほとんど注意が払われていない。
本稿は、このギャップを埋めることを目的としている。
リスクの高いAIシステム(AIA第15条)と汎用AIモデル(AIA第55条)の堅牢性とサイバーセキュリティに関する規定における法的課題と欠点を特定した。
我々は、堅牢性とサイバーセキュリティがパフォーマンス破壊に対するレジリエンスを要求していることを示します。
さらに、機械学習(ML)文学における近年の進歩を踏まえ、これらの規定を実装する際の潜在的な課題を評価する。
本分析は,欧州委員会による調和標準,ガイドライン,および第15条(2)AIAに基づくベンチマークおよび測定手法の開発に向けた取り組みについて報告する。
これにより、法用語学とML研究のギャップを埋め、研究と実施の連携を深める。
関連論文リスト
- Automation Bias in the AI Act: On the Legal Implications of Attempting to De-Bias Human Oversight of AI [0.0]
本稿では,人工知能法(AIA)における自動化バイアス(AB)の明示的言及の法的意味について検討する。
TheAIAは、リスクの高いAIシステムに対する人間の監視を義務付け、プロバイダがABの認識を可能にすることを要求する。
論文 参考訳(メタデータ) (2025-02-14T09:26:59Z) - Securing the AI Frontier: Urgent Ethical and Regulatory Imperatives for AI-Driven Cybersecurity [0.0]
本稿では,サイバーセキュリティにおける人工知能の統合によって引き起こされる倫理的・規制上の課題について批判的に考察する。
我々は、1940年代の理論的議論から、欧州連合のAI法のような最近のグローバルなフレームワークの実装に至るまで、AI規制の歴史的発展を辿った。
バイアス、透明性、説明責任、プライバシ、人間の監視といった倫理的な懸念は、AI駆動のサイバーセキュリティシステムに影響を及ぼすとともに、深く調査されている。
論文 参考訳(メタデータ) (2025-01-15T18:17:37Z) - The Fundamental Rights Impact Assessment (FRIA) in the AI Act: Roots, legal obligations and key elements for a model template [55.2480439325792]
基本権利影響評価(FRIA)の理論的・方法論的検討における既存のギャップを埋めることを目的とする。
この記事では、FRIAのモデルテンプレートの主要なビルディングブロックについて概説する。
これは、AIが人権と完全に整合していることを保証するために、他の国家および国際規制イニシアチブの青写真として機能する。
論文 参考訳(メタデータ) (2024-11-07T11:55:55Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
本稿では、欧州連合の人工知能法(EU AI法)を批判的に検討する。
人工知能における技術的アライメントの潜在的な落とし穴に焦点を当てたアライメント理論(AT)研究からの洞察を利用する。
これらの概念をEU AI Actに適用すると、潜在的な脆弱性と規制を改善するための領域が明らかになる。
論文 参考訳(メタデータ) (2024-10-10T17:38:38Z) - Operationalizing the Blueprint for an AI Bill of Rights: Recommendations for Practitioners, Researchers, and Policy Makers [20.16404495546234]
世界の様々な国でいくつかの規制の枠組みが導入されている。
これらのフレームワークの多くは、AIツールの監査と信頼性向上の必要性を強調している。
これらの規制の枠組みは実施の必要性を強調しているが、実践者はしばしば実施に関する詳細なガイダンスを欠いている。
我々は、最先端の文献の分かりやすい要約を提供し、規制ガイドラインと既存のAI研究の間に存在する様々なギャップを強調します。
論文 参考訳(メタデータ) (2024-07-11T17:28:07Z) - Responsible Artificial Intelligence: A Structured Literature Review [0.0]
EUは最近、AIへの信頼の必要性を強調するいくつかの出版物を公表した。
これは国際規制の緊急の必要性を浮き彫りにする。
本稿は、私たちの知る限り、責任あるAIの最初の統一された定義を包括的かつ包括的に紹介する。
論文 参考訳(メタデータ) (2024-03-11T17:01:13Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Generative AI in EU Law: Liability, Privacy, Intellectual Property, and Cybersecurity [1.9806397201363817]
本稿では、欧州連合の文脈におけるジェネレーティブAIと大規模言語モデル(LLM)の法的および規制的意味について述べる。
責任、プライバシー、知的財産権、サイバーセキュリティの側面を分析する。
生成モデルの安全性とコンプライアンスを保証するためのレコメンデーションを提案している。
論文 参考訳(メタデータ) (2024-01-14T19:16:29Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
AIの開発と規制は、重要な段階に達したようだ。
一部の専門家は、GPT-4よりも強力なAIシステムのトレーニングに関するモラトリアムを求めている。
本稿では、最も先進的な法的提案である欧州連合のAI法について分析する。
論文 参考訳(メタデータ) (2023-11-03T12:51:37Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。