論文の概要: Brain-Model Evaluations Need the NeuroAI Turing Test
- arxiv url: http://arxiv.org/abs/2502.16238v1
- Date: Sat, 22 Feb 2025 14:16:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:58:45.592858
- Title: Brain-Model Evaluations Need the NeuroAI Turing Test
- Title(参考訳): ニューロAIチューリングテストに必要な脳モデル評価
- Authors: Jenelle Feather, Meenakshi Khosla, N. Apurva Ratan Murty, Aran Nayebi,
- Abstract要約: アラン・チューリングが提唱した古典的なテストは行動に焦点を当てており、人工エージェントの行動が人間の行動と区別できないことを要求している。
このポジションペーパーは、チューリングテストの標準的な定義はNeuroAIには不完全であると主張している。
これは、振る舞いのみを越えて拡張されるベンチマークであるNeuroAI Turing Test'と呼ばれる、より強力なフレームワークを提案する。
- 参考スコア(独自算出の注目度): 4.525325675715108
- License:
- Abstract: What makes an artificial system a good model of intelligence? The classical test proposed by Alan Turing focuses on behavior, requiring that an artificial agent's behavior be indistinguishable from that of a human. While behavioral similarity provides a strong starting point, two systems with very different internal representations can produce the same outputs. Thus, in modeling biological intelligence, the field of NeuroAI often aims to go beyond behavioral similarity and achieve representational convergence between a model's activations and the measured activity of a biological system. This position paper argues that the standard definition of the Turing Test is incomplete for NeuroAI, and proposes a stronger framework called the ``NeuroAI Turing Test'', a benchmark that extends beyond behavior alone and \emph{additionally} requires models to produce internal neural representations that are empirically indistinguishable from those of a brain up to measured individual variability, i.e. the differences between a computational model and the brain is no more than the difference between one brain and another brain. While the brain is not necessarily the ceiling of intelligence, it remains the only universally agreed-upon example, making it a natural reference point for evaluating computational models. By proposing this framework, we aim to shift the discourse from loosely defined notions of brain inspiration to a systematic and testable standard centered on both behavior and internal representations, providing a clear benchmark for neuroscientific modeling and AI development.
- Abstract(参考訳): 人工知能が優れたインテリジェンスモデルになるのはなぜか?
アラン・チューリングが提唱した古典的なテストは行動に焦点を当てており、人工エージェントの行動が人間の行動と区別できないことを要求している。
振舞いの類似性は強い出発点を提供するが、内部表現が全く異なる2つの系は同じ出力を生成することができる。
このように、生物学的知能のモデリングにおいて、NeuroAIの分野は、行動の類似性を超えて、モデルの活性化と生体系の測定された活動との表現的収束を達成することを目的としている。
このポジションペーパーは、チューリングテストの標準定義がNeuroAIには不完全であり、「NeuroAI Turing Test」と呼ばれるより強力なフレームワークを提案する。これは、行動のみを超えて拡張するベンチマークであり、「emph{additionally}」は、脳が測定された個々の変数まで経験的に区別できない内部の神経表現を生成するモデル、すなわち、計算モデルと脳の差は、脳と他の脳の差以上のものではない。
脳は必ずしも知性の天井ではないが、広く合意された唯一の例であり、計算モデルを評価するための自然な基準点である。
この枠組みを提案することで、脳のインスピレーションの緩やかに定義された概念から、行動と内部表現の両方に焦点を当てた体系的でテスト可能な標準に転換し、神経科学モデリングとAI開発のための明確なベンチマークを提供することを目指している。
関連論文リスト
- MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Inferring Inference [7.11780383076327]
我々は,大規模神経活動パターンから標準分散計算を推定するフレームワークを開発した。
確率的グラフィカルモデルに近似推論アルゴリズムを暗黙的に実装したモデル脳のための記録をシミュレートする。
全体として、このフレームワークはニューラル記録の解釈可能な構造を発見するための新しいツールを提供する。
論文 参考訳(メタデータ) (2023-10-04T22:12:11Z) - From internal models toward metacognitive AI [0.0]
前頭前皮質では、「認知現実監視ネットワーク」と呼ばれる分散型エグゼクティブネットワークが、生成的逆モデルペアの意識的な関与を編成する。
高い責任信号は、外界を最も捉えているペアに与えられる。
意識はすべての対における責任信号のエントロピーによって決定される。
論文 参考訳(メタデータ) (2021-09-27T05:00:56Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
インテルの第5世代ニューロモルフィックチップ「Loihi」の可能性について検討する。
Loihiは、脳内のニューロンをエミュレートするスパイキングニューラルネットワーク(SNN)という新しいアイデアに基づいている。
Loihiは従来のシミュレーションを非常に効率的に再現し、ネットワークが大きくなるにつれて、時間とエネルギーの両方のパフォーマンスにおいて顕著にスケールする。
論文 参考訳(メタデータ) (2021-09-22T16:52:51Z) - Explanatory models in neuroscience: Part 2 -- constraint-based
intelligibility [8.477619837043214]
計算モデリングは神経科学においてますます重要な役割を担い、モデルがどのように説明するかという哲学的な疑問を浮き彫りにしている。
生物学的システムでは、これらの依存関係の多くは自然に「トップダウン」である
NNモデルの構築に使用される最適化手法が,これらの依存関係のいくつかの重要な側面をいかに捉えているかを示す。
論文 参考訳(メタデータ) (2021-04-03T22:14:01Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z) - A Neural Dynamic Model based on Activation Diffusion and a
Micro-Explanation for Cognitive Operations [4.416484585765028]
記憶の神経機構は、人工知能における表現の問題と非常に密接な関係を持っている。
脳内のニューロンのネットワークとその情報処理のシミュレーションを行う計算モデルが提案された。
論文 参考訳(メタデータ) (2020-11-27T01:34:08Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z) - Brain-inspired self-organization with cellular neuromorphic computing
for multimodal unsupervised learning [0.0]
本稿では,自己組織マップとヘビアン様学習を用いた再突入理論に基づく脳刺激型ニューラルシステムを提案する。
システムトポロジがユーザによって固定されるのではなく,自己組織化によって学習されるような,いわゆるハードウェアの可塑性の獲得について述べる。
論文 参考訳(メタデータ) (2020-04-11T21:02:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。