論文の概要: Improving Monocular Visual-Inertial Initialization with Structureless Visual-Inertial Bundle Adjustment
- arxiv url: http://arxiv.org/abs/2502.16598v1
- Date: Sun, 23 Feb 2025 14:55:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:52:39.872712
- Title: Improving Monocular Visual-Inertial Initialization with Structureless Visual-Inertial Bundle Adjustment
- Title(参考訳): 構造のない視覚-慣性バンドル調整による単眼視覚-慣性初期化の改善
- Authors: Junlin Song, Antoine Richard, Miguel Olivares-Mendez,
- Abstract要約: そこで我々は, 従来の構造のない解をさらに洗練するために, 構造のない視覚-慣性バンドルの調整を提案する。
実世界のデータセットを用いた実験により,実時間性能を維持しつつ,VIOの初期化精度を大幅に向上することが示された。
- 参考スコア(独自算出の注目度): 0.36868085124383626
- License:
- Abstract: Monocular visual inertial odometry (VIO) has facilitated a wide range of real-time motion tracking applications, thanks to the small size of the sensor suite and low power consumption. To successfully bootstrap VIO algorithms, the initialization module is extremely important. Most initialization methods rely on the reconstruction of 3D visual point clouds. These methods suffer from high computational cost as state vector contains both motion states and 3D feature points. To address this issue, some researchers recently proposed a structureless initialization method, which can solve the initial state without recovering 3D structure. However, this method potentially compromises performance due to the decoupled estimation of rotation and translation, as well as linear constraints. To improve its accuracy, we propose novel structureless visual-inertial bundle adjustment to further refine previous structureless solution. Extensive experiments on real-world datasets show our method significantly improves the VIO initialization accuracy, while maintaining real-time performance.
- Abstract(参考訳): 単眼の視覚慣性計測(VIO)は、センサースイートの小型化と消費電力の低さにより、広範囲のリアルタイムモーショントラッキングアプリケーションを容易にしている。
VIOアルゴリズムのブートストラップを成功させるためには、初期化モジュールが非常に重要である。
ほとんどの初期化法は3次元視覚点雲の再構成に依存している。
これらの方法は、状態ベクトルが運動状態と3D特徴点の両方を含むため、計算コストが高い。
この問題に対処するため、一部の研究者は3次元構造を復元することなく初期状態を解決できる構造のない初期化法を最近提案した。
しかし、この手法は、回転と翻訳の分離された推定と線形制約により性能を損なう可能性がある。
そこで我々は,その精度を向上させるために,従来の構造のない解をさらに洗練するために,新しい構造のない視覚-慣性バンドル調整を提案する。
実世界のデータセットに対する大規模な実験により,本手法は実時間性能を維持しつつ,VIO初期化精度を大幅に向上することが示された。
関連論文リスト
- MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion [118.74385965694694]
我々は動的シーンから時間ステップごとの幾何を直接推定する新しい幾何学的アプローチであるMotion DUSt3R(MonST3R)を提案する。
各タイムステップのポイントマップを単純に推定することで、静的シーンにのみ使用されるDUST3Rの表現を動的シーンに効果的に適応させることができる。
我々は、問題を微調整タスクとしてポーズし、いくつかの適切なデータセットを特定し、この制限されたデータ上でモデルを戦略的に訓練することで、驚くほどモデルを動的に扱えることを示す。
論文 参考訳(メタデータ) (2024-10-04T18:00:07Z) - Learned Monocular Depth Priors in Visual-Inertial Initialization [4.99761983273316]
視覚慣性オドメトリー(VIO)は、今日のほとんどのAR/VRおよび自律ロボットシステムのポーズ推定バックボーンである。
本稿では,古典的視覚慣性構造の限界を回避することを提案する。
学習した単眼深度画像(単眼深度)を利用して特徴の相対的深度を制約し,そのスケールとシフトを最適化することにより,単眼深度をメートル法スケールにアップグレードする。
論文 参考訳(メタデータ) (2022-04-20T00:30:04Z) - OcclusionFusion: Occlusion-aware Motion Estimation for Real-time Dynamic
3D Reconstruction [14.130915525776055]
RGBDに基づくリアルタイム動的3次元再構成は、フレーム間運動推定の不正確さに悩まされる。
オクルージョンフュージョン(OcclusionFusion, OcclusionFusion)は、オクルージョンを意識した3次元運動を計算し、再構成を誘導する手法である。
本手法は,既存の単一ビューベースリアルタイム手法よりも大きなマージンで性能を向上する。
論文 参考訳(メタデータ) (2022-03-15T15:09:01Z) - Revisiting Point Cloud Simplification: A Learnable Feature Preserving
Approach [57.67932970472768]
MeshとPoint Cloudの単純化手法は、3Dモデルの複雑さを低減しつつ、視覚的品質と関連する健全な機能を維持することを目的としている。
そこで本研究では,正解点の標本化を学習し,高速点雲の簡易化手法を提案する。
提案手法は、入力空間から任意のユーザ定義の点数を選択し、視覚的知覚誤差を最小限に抑えるために、その位置を再配置するよう訓練されたグラフニューラルネットワークアーキテクチャに依存する。
論文 参考訳(メタデータ) (2021-09-30T10:23:55Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
コンピュータビジョン、ロボティクス、グラフィックスの様々な用途において、高精細な3Dオブジェクトをスパースから再構築することは重要です。
最近の神経暗黙的モデリング法は、合成データセットまたは高密度データセットで有望な結果を示す。
しかし、粗末でノイズの多い実世界のデータではパフォーマンスが悪い。
本論文では, 一般的な神経暗黙モデルの性能低下の根本原因を解析する。
論文 参考訳(メタデータ) (2021-01-18T03:24:48Z) - FlowStep3D: Model Unrolling for Self-Supervised Scene Flow Estimation [87.74617110803189]
シーンフローとして知られるシーン内の点の3次元運動を推定することは、コンピュータビジョンにおける中核的な問題である。
本稿では,シーンフローの予測を洗練するための反復的アライメント手順の1ステップを学習する再帰的アーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-11-19T23:23:48Z) - SCFusion: Real-time Incremental Scene Reconstruction with Semantic
Completion [86.77318031029404]
本研究では,シーン再構成とセマンティックシーン補完を段階的かつリアルタイムに共同で行うフレームワークを提案する。
我々のフレームワークは、3Dグローバルモデルでセマンティックコンプリートを正確かつ効率的に融合させるために、占有マップを処理し、ボクセル状態を活用するように設計された新しいニューラルアーキテクチャに依存している。
論文 参考訳(メタデータ) (2020-10-26T15:31:52Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
モノクロ3次元物体検出は、2次元入力画像から物体の位置と特性を抽出することを目的としている。
従来のアプローチでは、空間から3D境界ボックスをサンプリングし、対象オブジェクトと各オブジェクトの関係を推定するが、有効サンプルの確率は3D空間で比較的小さい。
我々は,まず最初の予測から始めて,各ステップで1つの3dパラメータだけを変えて,基礎的真理に向けて徐々に洗練することを提案する。
これは、いくつかのステップの後に報酬を得るポリシーを設計する必要があるため、最適化するために強化学習を採用します。
論文 参考訳(メタデータ) (2020-08-31T17:10:48Z) - GPO: Global Plane Optimization for Fast and Accurate Monocular SLAM
Initialization [22.847353792031488]
アルゴリズムは、スライドウィンドウでのホモグラフィー推定から始まる。
提案手法は,複数フレームからの平面情報を完全に活用し,ホモグラフィ分解における曖昧さを回避する。
実験の結果,提案手法は精度とリアルタイムの両面において微調整ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2020-04-25T03:57:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。