論文の概要: Mapping out AI Functions in Intelligent Disaster (Mis)Management and AI-Caused Disasters
- arxiv url: http://arxiv.org/abs/2502.16644v3
- Date: Wed, 28 May 2025 18:15:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 18:14:07.373326
- Title: Mapping out AI Functions in Intelligent Disaster (Mis)Management and AI-Caused Disasters
- Title(参考訳): 知的災害(ミス)管理とAI利用災害におけるAI関数のマッピング
- Authors: Yasser Pouresmaeil, Saleh Afroogh, Junfeng Jiao,
- Abstract要約: 本研究は,災害(災害)管理における人工知能の機能のマッピングである。
原因パラメータの観点からの災害の分類から始まり、独立したAIやハイブリッドAIによる災害の仮説的なケースを導入する。
次に,災害管理と災害管理におけるAIの役割について概説する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study maps the functions of artificial intelligence in disaster (mis)management. It begins with a classification of disasters in terms of their causal parameters, introducing hypothetical cases of independent or hybrid AI-caused disasters. We then overview the role of AI in disaster management and mismanagement, where the latter includes possible ethical repercussions of the use of AI in intelligent disaster management (IDM), as well as ways to prevent or mitigate these issues, which include pre-design a priori, in-design, and post-design methods as well as regulations. We then discuss the governments role in preventing the ethical repercussions of AI use in IDM and identify and asses its deficits and challenges. This discussion is followed by an account of the advantages and disadvantages of pre-design or embedded ethics. Finally, we briefly consider the question of accountability and liability in AI-caused disasters.
- Abstract(参考訳): 本研究は,災害(災害)管理における人工知能の機能のマッピングである。
原因パラメータの観点からの災害の分類から始まり、独立したAIやハイブリッドAIによる災害の仮説的なケースを導入する。
次に、災害管理と災害管理におけるAIの役割について概説する。そこでは、知的災害管理(IDM)におけるAIの使用の倫理的影響や、事前設計、設計、設計後の方法、規制など、これらの問題を予防または緩和する方法を含める。
次に、IDMにおけるAI使用の倫理的影響の防止における政府の役割について議論し、その欠陥と課題を特定し、評価する。
この議論に続き、事前設計や組込み倫理の利点と欠点が説明される。
最後に、AIによる災害における説明責任と責任の問題について簡潔に考察する。
関連論文リスト
- AI Automatons: AI Systems Intended to Imitate Humans [54.19152688545896]
人々の行動、仕事、能力、類似性、または人間性を模倣するように設計されたAIシステムが増加している。
このようなAIシステムの研究、設計、展開、可用性は、幅広い法的、倫理的、その他の社会的影響に対する懸念を喚起している。
論文 参考訳(メタデータ) (2025-03-04T03:55:38Z) - Causal Responsibility Attribution for Human-AI Collaboration [62.474732677086855]
本稿では,人間のAIシステムにおける責任を体系的に評価するために,構造因果モデル(SCM)を用いた因果的枠組みを提案する。
2つのケーススタディは、多様な人間とAIのコラボレーションシナリオにおけるフレームワークの適応性を示している。
論文 参考訳(メタデータ) (2024-11-05T17:17:45Z) - Lessons for Editors of AI Incidents from the AI Incident Database [2.5165775267615205]
AIインシデントデータベース(AIID)は、AIインシデントをカタログ化し、インシデントを分類するプラットフォームを提供することでさらなる研究を支援するプロジェクトである。
この研究は、AIIDの750以上のAIインシデントのデータセットと、これらのインシデントに適用された2つの独立した曖昧さをレビューし、AIインシデントをインデックス化し分析する一般的な課題を特定する。
我々は、インシデントプロセスが原因、害の程度、重大さ、あるいは関連するシステムの技術的詳細に関連する不確実性に対してより堅牢になるよう、軽減策を報告する。
論文 参考訳(メタデータ) (2024-09-24T19:46:58Z) - AI for All: Identifying AI incidents Related to Diversity and Inclusion [5.364403920214549]
本研究では,AIインシデントデータベースを手動で解析することで,AIシステム内のD&I問題を特定し,理解する。
分析されたAIインシデントのほぼ半数は、人種、性別、年齢差別の顕著な優位性を持つD&Iに関連している。
論文 参考訳(メタデータ) (2024-07-19T08:54:56Z) - Societal Adaptation to Advanced AI [1.2607853680700076]
先進的なAIシステムからリスクを管理する既存の戦略は、AIシステムの開発方法と拡散方法に影響を与えることに集中することが多い。
我々は、先進的なAIへの社会適応の増大という補完的なアプローチを奨励する。
我々は、AIシステムの潜在的に有害な使用を回避し、防御し、治療する適応的介入を特定するのに役立つ概念的枠組みを導入する。
論文 参考訳(メタデータ) (2024-05-16T17:52:12Z) - AI Governance and Accountability: An Analysis of Anthropic's Claude [0.0]
本稿では,基本的AIモデルであるArthropicのClaudeに着目し,AIガバナンスの展望について考察する。
我々は、NIST AI Risk Management FrameworkとEU AI Actのレンズを通してCludeを分析し、潜在的な脅威を特定し、緩和戦略を提案する。
論文 参考訳(メタデータ) (2024-05-02T23:37:06Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
汎用AIは、一般大衆がAIを使用してそのパワーを利用するための障壁を下げたようだ。
本稿では,AI利用事例とその影響を推測し,評価するためのフレームワークであるPartICIP-AIを紹介する。
論文 参考訳(メタデータ) (2024-03-21T19:12:37Z) - What's my role? Modelling responsibility for AI-based safety-critical
systems [1.0549609328807565]
開発者や製造業者は、AI-SCSの有害な振る舞いに責任を負うことは困難である。
人間のオペレータは、作成に責任を負わなかったAI-SCS出力の結果に責任を負う"信頼性シンク"になる可能性がある。
本稿では,異なる責任感(ロール,モラル,法的,因果関係)と,それらがAI-SCSの安全性の文脈でどのように適用されるかを検討する。
論文 参考訳(メタデータ) (2023-12-30T13:45:36Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Predictable Artificial Intelligence [77.1127726638209]
本稿では予測可能なAIのアイデアと課題を紹介する。
それは、現在および将来のAIエコシステムの重要な妥当性指標を予測できる方法を探る。
予測可能性を達成することは、AIエコシステムの信頼、責任、コントロール、アライメント、安全性を促進するために不可欠である、と私たちは主張する。
論文 参考訳(メタデータ) (2023-10-09T21:36:21Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。