論文の概要: AI for All: Identifying AI incidents Related to Diversity and Inclusion
- arxiv url: http://arxiv.org/abs/2408.01438v1
- Date: Fri, 19 Jul 2024 08:54:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 05:08:47.986302
- Title: AI for All: Identifying AI incidents Related to Diversity and Inclusion
- Title(参考訳): AI for All: 多様性と包摂性に関連するAIインシデントを特定する
- Authors: Rifat Ara Shams, Didar Zowghi, Muneera Bano,
- Abstract要約: 本研究では,AIインシデントデータベースを手動で解析することで,AIシステム内のD&I問題を特定し,理解する。
分析されたAIインシデントのほぼ半数は、人種、性別、年齢差別の顕著な優位性を持つD&Iに関連している。
- 参考スコア(独自算出の注目度): 5.364403920214549
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid expansion of Artificial Intelligence (AI) technologies has introduced both significant advancements and challenges, with diversity and inclusion (D&I) emerging as a critical concern. Addressing D&I in AI is essential to reduce biases and discrimination, enhance fairness, and prevent adverse societal impacts. Despite its importance, D&I considerations are often overlooked, resulting in incidents marked by built-in biases and ethical dilemmas. Analyzing AI incidents through a D&I lens is crucial for identifying causes of biases and developing strategies to mitigate them, ensuring fairer and more equitable AI technologies. However, systematic investigations of D&I-related AI incidents are scarce. This study addresses these challenges by identifying and understanding D&I issues within AI systems through a manual analysis of AI incident databases (AIID and AIAAIC). The research develops a decision tree to investigate D&I issues tied to AI incidents and populate a public repository of D&I-related AI incidents. The decision tree was validated through a card sorting exercise and focus group discussions. The research demonstrates that almost half of the analyzed AI incidents are related to D&I, with a notable predominance of racial, gender, and age discrimination. The decision tree and resulting public repository aim to foster further research and responsible AI practices, promoting the development of inclusive and equitable AI systems.
- Abstract(参考訳): 人工知能(AI)技術の急速な拡張は、多様性と包摂性(D&I)が重要な懸念事項として現れ、大きな進歩と課題の両方をもたらした。
AIにおけるD&Iへの対応は、バイアスと差別を減らし、公平性を高め、社会的悪影響を防ぐために不可欠である。
その重要性にもかかわらず、D&Iの考慮はしばしば見落とされ、結果として、内蔵バイアスと倫理的ジレンマが特徴である。
D&Iレンズを通じてAIインシデントを分析することは、バイアスの原因を特定し、それらを緩和し、より公平で公平なAI技術を確保するための戦略を開発するために不可欠である。
しかし、D&I関連のAIインシデントに関する体系的な調査は少ない。
本研究では,AIインシデントデータベース(AIID,AIAAIC)を手動で解析することで,AIシステム内のD&I問題を特定し,理解することで,これらの課題に対処する。
この研究は、AIインシデントに関連するD&I問題を調査し、D&I関連のAIインシデントを公開リポジトリに配置する決定ツリーを開発する。
決定木はカードソートとグループディスカッションで検証された。
この研究は、分析されたAIインシデントのほぼ半数が、人種、性別、年齢差別の顕著な優位性を持つD&Iに関連していることを示している。
決定ツリーと結果の公開リポジトリは、さらなる研究と責任あるAIプラクティスを促進し、包括的で公平なAIシステムの開発を促進することを目的としている。
関連論文リスト
- Particip-AI: Anticipating Future AI Use Cases and Impacts with Lay Users [54.648819983899614]
汎用AIは、一般大衆がAIを使用してそのパワーを利用するための障壁を下げたようだ。
本稿では,AI利用事例とその影響を推測し,評価するためのフレームワークであるPartICIP-AIを紹介する。
論文 参考訳(メタデータ) (2024-03-21T19:12:37Z) - AI Ethics: A Bibliometric Analysis, Critical Issues, and Key Gaps [3.8214695776749013]
この研究は、過去20年間にAI倫理文学の総合的文献計測分析を行った。
彼らは、コリングリッジジレンマを含む7つの重要なAI倫理問題、AIステータスの議論、AIの透明性と説明可能性に関連する課題、プライバシー保護の合併症、正義と公正の考慮、アルゴクラシーと人間の啓発に関する懸念、超知能の問題を提示している。
論文 参考訳(メタデータ) (2024-03-12T21:43:21Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Artificial intelligence and the transformation of higher education
institutions [0.0]
本稿では、典型的なHEIにおけるAI変換の因果フィードバック機構をマッピングするための因果ループ図(CLD)を開発する。
私たちのモデルは、AI変革を駆動する力と、典型的なHEIにおける価値創造に対するAI変革の結果について説明します。
この記事では、学生の学習、研究、管理を改善するために、HEIがAIに投資する方法について、いくつかの強化とバランスの取れたフィードバックループを特定し、分析する。
論文 参考訳(メタデータ) (2024-02-13T00:36:10Z) - Investigating Responsible AI for Scientific Research: An Empirical Study [4.597781832707524]
このような機関におけるResponsible AI(RAI)の推進は、AI設計と開発に倫理的配慮を統合することの重要性の高まりを強調している。
本稿では,AI設計・開発に内在する倫理的リスクに対する意識と準備性を評価することを目的とする。
その結果、倫理的、責任的、包括的AIに関する知識ギャップが明らかとなり、利用可能なAI倫理フレームワークに対する認識が制限された。
論文 参考訳(メタデータ) (2023-12-15T06:40:27Z) - The AI Incident Database as an Educational Tool to Raise Awareness of AI
Harms: A Classroom Exploration of Efficacy, Limitations, & Future
Improvements [14.393183391019292]
AIインシデントデータベース(AIID)は、AI技術の現実世界への展開に起因する害や害の先行事例を索引付けする、比較的包括的なデータベースを提供する、数少ない試みの1つである。
本研究は、社会的に高い領域におけるAI損傷の有病率と重症度に対する意識を高めるための教育ツールとしてのAIIDの有効性を評価する。
論文 参考訳(メタデータ) (2023-10-10T02:55:09Z) - Predictable Artificial Intelligence [67.79118050651908]
予測可能性を達成することは、AIエコシステムの信頼、責任、コントロール、アライメント、安全性を促進するために不可欠である、と私たちは主張する。
本稿では,予測可能なAIに関する疑問,仮説,課題を解明することを目的とする。
論文 参考訳(メタデータ) (2023-10-09T21:36:21Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Socially Responsible AI Algorithms: Issues, Purposes, and Challenges [31.382000425295885]
技術者とAI研究者は、信頼できるAIシステムを開発する責任がある。
AIと人間の長期的な信頼を構築するためには、アルゴリズムの公正性を超えて考えることが鍵だ、と私たちは主張する。
論文 参考訳(メタデータ) (2021-01-01T17:34:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。