論文の概要: An Efficient Quantum Approximate Optimization Algorithm with Fixed Linear Ramp Schedule for Truss Structure Optimization
- arxiv url: http://arxiv.org/abs/2502.16769v1
- Date: Mon, 24 Feb 2025 01:19:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:51:50.453926
- Title: An Efficient Quantum Approximate Optimization Algorithm with Fixed Linear Ramp Schedule for Truss Structure Optimization
- Title(参考訳): トラス構造最適化のための固定線形ランプスケジュールを用いた効率的な量子近似最適化アルゴリズム
- Authors: Junsen Xiao, Naruethep Sukulthanasorn, Reika Nomura, Shuji Moriguchi, Kenjiro Terada,
- Abstract要約: 本研究では,量子変動回路に基づく新しい構造最適化手法を提案する。
設計変数を乗算器として定義することにより、ロッドの断面領域を調整する際の柔軟性が向上する。
その結果、目的関数は単純な形式であり、QAOAを用いた効率的な最適化を可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This study proposes a novel structural optimization framework based on quantum variational circuits, in which the multiplier acting on the cross-sectional area of each rod in a truss structure as an updater is used as a design variable. Specifically, we employ a classical processor for structural analysis with the finite element method, and the Quantum Approximate Optimization Algorithm (QAOA) is subsequently performed to update the cross-sectional area so that the compliance is minimized. The advantages of this framework can be seen in three key aspects. First, by defining design variables as multipliers, rather than simply reducing the design variable to a binary candidate of inclusion or exclusion (corresponding to qubit states, ``0" and ``1"), it provides greater flexibility in adjusting the cross-sectional area of the rod at each iteration of the optimization process. Second, the multipliers acting on rods are encoded with on-off encoding, eliminating additional constraints in the convergence judgement. As a result, the objective function is in a simple format, enabling efficient optimization using QAOA.Third, a fixed linear ramp schedule (FLRS) for variational parameter setting bypasses the classical optimization process, thereby improving the operational efficiency of the framework. In the two structural cases investigated in this study, the proposed approach highlights the feasibility and applicability potential of quantum computing in advancing engineering design and optimization. Numerical experiments have demonstrated the effectiveness of this framework, providing a firm foundation for future research on quantum-assisted optimization methods in engineering fields.
- Abstract(参考訳): 本研究では, トラス構造において各ロッドの断面領域に作用する乗算器を設計変数として, 量子変動回路に基づく新しい構造最適化手法を提案する。
具体的には、有限要素法による構造解析に古典的プロセッサを使用し、その後量子近似最適化アルゴリズム(QAOA)が実行され、整合性を最小限に抑えるために断面領域を更新する。
このフレームワークの利点は3つの重要な側面で見ることができる。
まず、設計変数を乗算器として定義することで、設計変数をインクルージョンまたは除外のバイナリ候補(qubit state, ``0" と ``1 に対応する)に単純に還元するのではなく、最適化プロセスの各イテレーションでロッドの断面領域を調整する際の柔軟性を高めることができる。
第二に、ロッドに作用する乗算器はオンオフ符号化で符号化され、収束判定における追加の制約が除去される。
その結果、目的関数は単純な形式であり、QAOAを用いた効率的な最適化が可能となり、変分パラメータ設定のための固定線形ランプスケジュール(FLRS)が古典的な最適化プロセスをバイパスし、フレームワークの運用効率が向上する。
本研究における2つの構造的ケースにおいて, 提案手法は, 設計・最適化の進歩における量子コンピューティングの実現可能性と適用可能性を強調した。
数値実験により、この枠組みの有効性が実証され、今後の工学分野における量子支援最適化手法の研究の基礎となる。
関連論文リスト
- A novel design update framework for topology optimization with quantum annealing: Application to truss and continuum structures [0.0]
本稿では,トポロジ最適化のための新しい設計更新戦略を反復的最適化として提案する。
鍵となる貢献は、トラスと連続体構造の両方に適用可能な、設計更新器の概念を量子アニールに組み込むことである。
その結果,提案フレームワークはベンチマーク結果に類似した最適なトポロジを見出すことができた。
論文 参考訳(メタデータ) (2024-06-27T02:07:38Z) - Variational Quantum Framework for Partial Differential Equation Constrained Optimization [0.6138671548064355]
PDE制約最適化問題に対する新しい変分量子フレームワークを提案する。
提案フレームワークは,変分量子リニア(VQLS)アルゴリズムとブラックボックスを主構成ブロックとして利用する。
論文 参考訳(メタデータ) (2024-05-26T18:06:43Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
現在の量子最適化アルゴリズムでは、元の問題を二進最適化問題として表現し、量子デバイスに適した等価イジングモデルに変換する必要がある。
目的関数を計算し、制約を認証するための古典的プログラムを設計し、後に量子回路にコンパイルする。
その結果,量子近似最適化アルゴリズム (QAOA) が新たに導入された。
論文 参考訳(メタデータ) (2022-09-07T18:01:01Z) - An Efficient Batch Constrained Bayesian Optimization Approach for Analog
Circuit Synthesis via Multi-objective Acquisition Ensemble [11.64233949999656]
MACE(Multi-objective Acquisition Function Ensemble)を用いた並列化可能なベイズ最適化アルゴリズムを提案する。
提案アルゴリズムは,バッチサイズが15のときの非制約最適化問題に対する微分進化(DE)と比較して,シミュレーション全体の時間を最大74倍削減することができる。
制約付き最適化問題に対して,提案アルゴリズムは,バッチサイズが15の場合に,重み付き改善に基づくベイズ最適化(WEIBO)アプローチと比較して最大15倍の高速化を実現することができる。
論文 参考訳(メタデータ) (2021-06-28T13:21:28Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
本研究では,連続空間の逆設計問題を,制約のないバイナリ最適化問題にマッピングする,汎用的な機械学習ベースのフレームワークを開発する。
本研究では, 熱発光トポロジを熱光応用に最適化し, (ii) 高効率ビームステアリングのための拡散メタグレーティングを行うことにより, 2つの逆設計問題に対するフレームワークの性能を示す。
論文 参考訳(メタデータ) (2021-05-06T02:22:23Z) - Unified Convergence Analysis for Adaptive Optimization with Moving Average Estimator [75.05106948314956]
1次モーメントに対する大きな運動量パラメータの増大は適応的スケーリングに十分であることを示す。
また,段階的に減少するステップサイズに応じて,段階的に運動量を増加させるための洞察を与える。
論文 参考訳(メタデータ) (2021-04-30T08:50:24Z) - Quantum variational optimization: The role of entanglement and problem
hardness [0.0]
本稿では, 絡み合いの役割, 変動量子回路の構造, 最適化問題の構造について検討する。
数値計算の結果,絡み合うゲートの分布を問題のトポロジに適応させる利点が示唆された。
リスク型コスト関数に条件値を適用することで最適化が向上し、最適解と重複する確率が増大することを示す。
論文 参考訳(メタデータ) (2021-03-26T14:06:54Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
バイレベル最適化は多くの機械学習問題に対するツールである。
Stoc-BiO という新しい確率効率勾配推定器を提案する。
論文 参考訳(メタデータ) (2020-10-15T18:09:48Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。