論文の概要: AI Agentic workflows and Enterprise APIs: Adapting API architectures for the age of AI agents
- arxiv url: http://arxiv.org/abs/2502.17443v1
- Date: Wed, 22 Jan 2025 05:55:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-16 22:53:28.777148
- Title: AI Agentic workflows and Enterprise APIs: Adapting API architectures for the age of AI agents
- Title(参考訳): AIエージェントワークフローとエンタープライズAPI:AIエージェント時代のAPIアーキテクチャへの適応
- Authors: Vaibhav Tupe, Shrinath Thube,
- Abstract要約: 生成型AIは、自律型AIエージェントの出現を触媒し、エンタープライズコンピューティングインフラストラクチャに対する前例のない課題を提示している。
現在のエンタープライズAPIアーキテクチャは、主に人間主導の事前定義されたインタラクションパターンのために設計されており、インテリジェントエージェントの動的で目標指向の振る舞いをサポートするために、それらを不備にしている。
本研究は,AIエージェントを効果的にサポートするエンタープライズAPIのアーキテクチャ適応を体系的に検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of Generative AI has catalyzed the emergence of autonomous AI agents, presenting unprecedented challenges for enterprise computing infrastructures. Current enterprise API architectures are predominantly designed for human-driven, predefined interaction patterns, rendering them ill-equipped to support intelligent agents' dynamic, goal-oriented behaviors. This research systematically examines the architectural adaptations for enterprise APIs to support AI agentic workflows effectively. Through a comprehensive analysis of existing API design paradigms, agent interaction models, and emerging technological constraints, the paper develops a strategic framework for API transformation. The study employs a mixed-method approach, combining theoretical modeling, comparative analysis, and exploratory design principles to address critical challenges in standardization, performance, and intelligent interaction. The proposed research contributes a conceptual model for next-generation enterprise APIs that can seamlessly integrate with autonomous AI agent ecosystems, offering significant implications for future enterprise computing architectures.
- Abstract(参考訳): Generative AIの急速な進歩は、自律型AIエージェントの台頭を触媒し、エンタープライズコンピューティングインフラストラクチャに対する前例のない課題を提示している。
現在のエンタープライズAPIアーキテクチャは、主に人間主導の事前定義されたインタラクションパターンのために設計されており、インテリジェントエージェントの動的で目標指向の振る舞いをサポートするために、それらを不備にしている。
本研究では,AIエージェントワークフローを効果的にサポートするエンタープライズAPIのアーキテクチャ適応を体系的に検討する。
既存のAPI設計パラダイム,エージェントインタラクションモデル,新たな技術的制約の包括的な分析を通じて,APIトランスフォーメーションのための戦略的フレームワークを開発する。
この研究は、理論モデリング、比較分析、探索的設計原則を組み合わせて、標準化、性能、知的相互作用における重要な課題に対処する混合手法のアプローチを採用している。
提案した研究は、自律型AIエージェントエコシステムとシームレスに統合可能な次世代エンタープライズAPIの概念モデルに貢献し、将来のエンタープライズコンピューティングアーキテクチャに重大な影響を与える。
関連論文リスト
- Agentic Web: Weaving the Next Web with AI Agents [109.13815627467514]
大規模言語モデル(LLM)を活用したAIエージェントの出現は、エージェントWebに対する重要な転換点である。
このパラダイムでは、エージェントが直接対話して、ユーザに代わって複雑なタスクを計画、コーディネート、実行します。
本稿では,エージェントWebの理解と構築のための構造化フレームワークを提案する。
論文 参考訳(メタデータ) (2025-07-28T17:58:12Z) - Deep Research Agents: A Systematic Examination And Roadmap [79.04813794804377]
Deep Research (DR) エージェントは複雑な多ターン情報研究タスクに取り組むように設計されている。
本稿では,DRエージェントを構成する基礎技術とアーキテクチャコンポーネントの詳細な分析を行う。
論文 参考訳(メタデータ) (2025-06-22T16:52:48Z) - Agentic AI for Intent-Based Industrial Automation [0.6906005491572401]
この研究は、エージェントAIとインテントベースのパラダイムを統合する概念的フレームワークを提案する。
このフレームワークは意図に基づく処理に基づいて、人間のオペレーターが自然言語でハイレベルなビジネスや運用目標を表現できるようにする。
CMAPSSデータセットとGoogle Agent Developer Kit (ADK)を使って概念実証を行った。
論文 参考訳(メタデータ) (2025-06-05T12:50:54Z) - Distinguishing Autonomous AI Agents from Collaborative Agentic Systems: A Comprehensive Framework for Understanding Modern Intelligent Architectures [0.0]
大規模言語モデルの出現は、人工知能の2つの異なる相互接続パラダイム、すなわちスタンドアロンAIエージェントと協調エージェントAIエコシステムを触媒した。
本研究は, 運用原則, 構造構成, 配置方法論の体系的解析を通じて, これらのアーキテクチャを識別するための決定的な枠組みを確立する。
論文 参考訳(メタデータ) (2025-06-02T08:52:23Z) - Vibe Coding vs. Agentic Coding: Fundamentals and Practical Implications of Agentic AI [0.36868085124383626]
レビューでは、AI支援ソフトウェア開発の新たなパラダイムとして、バイブコーディングとエージェントコーディングの2つを包括的に分析している。
Vibeのコーディングは、インプットベースで対話的なインタラクションを通じて、直感的で、ループ内の人間間インタラクションを強調する。
エージェントコーディングは、最小限の介入でタスクを計画、実行、テスト、反復できる目標駆動エージェントを通じて、自律的なソフトウェア開発を可能にする。
論文 参考訳(メタデータ) (2025-05-26T03:00:21Z) - AI Agents vs. Agentic AI: A Conceptual Taxonomy, Applications and Challenges [0.36868085124383626]
この研究はAIエージェントとエージェントAIを区別し、構造化された概念分類、アプリケーションマッピング、課題分析を提供する。
ジェネレーティブAIは前駆体として位置づけられており、AIエージェントはツールの統合、エンジニアリングの促進、推論の強化を通じて前進している。
エージェントAIシステムは、マルチエージェントコラボレーション、動的タスク分解、永続メモリ、オーケストレーション自律性によって特徴付けられるパラダイムシフトを表している。
論文 参考訳(メタデータ) (2025-05-15T16:21:33Z) - Internet of Agents: Fundamentals, Applications, and Challenges [66.44234034282421]
異種エージェント間のシームレスな相互接続、動的発見、協調的なオーケストレーションを可能にする基盤となるフレームワークとして、エージェントのインターネット(IoA)を紹介した。
我々は,機能通知と発見,適応通信プロトコル,動的タスクマッチング,コンセンサスとコンフリクト解決機構,インセンティブモデルなど,IoAの重要な運用イネーラを分析した。
論文 参考訳(メタデータ) (2025-05-12T02:04:37Z) - Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey [59.52058740470727]
エッジクラウドコラボレーティブコンピューティング(ECCC)は、現代のインテリジェントアプリケーションの計算要求に対処するための重要なパラダイムとして登場した。
AIの最近の進歩、特にディープラーニングと大規模言語モデル(LLM)は、これらの分散システムの能力を劇的に向上させてきた。
この調査は、基本的なアーキテクチャ、技術の実現、新しいアプリケーションに関する構造化されたチュートリアルを提供する。
論文 参考訳(メタデータ) (2025-05-03T13:55:38Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
大きな言語モデル(LLM)エージェントは、目標駆動の振る舞いと動的適応能力を持ち、人工知能への重要な経路を示す可能性がある。
本調査は, LLMエージェントシステムを方法論中心の分類法により体系的に分解する。
私たちの作業は、エージェントの構築方法、コラボレーション方法、時間の経過とともにどのように進化するか、という、統一されたアーキテクチャの視点を提供します。
論文 参考訳(メタデータ) (2025-03-27T12:50:17Z) - Towards Agentic AI Networking in 6G: A Generative Foundation Model-as-Agent Approach [35.05793485239977]
本稿では,AIエージェント間のインタラクション,協調学習,知識伝達を支援する新しいフレームワークであるAgentNetを提案する。
本稿では,デジタルツイン方式の産業自動化とメタバース方式のインフォテインメントシステムという,2つの応用シナリオについて考察する。
論文 参考訳(メタデータ) (2025-03-20T00:48:44Z) - Transforming the Hybrid Cloud for Emerging AI Workloads [81.15269563290326]
このホワイトペーパーでは、AIワークロードの複雑さの増大に対応するために、ハイブリッドクラウドシステムを変革することを想定している。
提案したフレームワークは、エネルギー効率、性能、コスト効率において重要な課題に対処する。
この共同イニシアチブは、ハイブリッドクラウドをセキュアで効率的で持続可能なプラットフォームとして確立することを目的としています。
論文 参考訳(メタデータ) (2024-11-20T11:57:43Z) - Collaborative AI in Sentiment Analysis: System Architecture, Data Prediction and Deployment Strategies [3.3374611485861116]
大規模言語モデル(LLM)に基づく人工知能技術は、特に感情分析においてゲームチェンジャーとなっている。
しかし、複雑なマルチモーダルデータを処理するための多様なAIモデルの統合と、それに伴う機能抽出の高コストは、大きな課題を呈している。
本研究では,様々なAIシステムにまたがるタスクを効率的に分散・解決するための協調型AIフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-17T06:14:34Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - ComfyBench: Benchmarking LLM-based Agents in ComfyUI for Autonomously Designing Collaborative AI Systems [80.69865295743149]
この研究は、LLMベースのエージェントを使用して、協調AIシステムを自律的に設計する試みである。
ComfyBenchをベースとしたComfyAgentは,エージェントが自律的に協調的なAIシステムを生成して設計できるようにするフレームワークである。
ComfyAgentは、o1-previewに匹敵する解像度を達成し、ComfyBenchの他のエージェントをはるかに上回っているが、ComfyAgentはクリエイティブタスクの15%しか解決していない。
論文 参考訳(メタデータ) (2024-09-02T17:44:10Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
コネクショニストと象徴的人工知能(AI)の収束を探求する記事
従来、コネクショナリストAIはニューラルネットワークにフォーカスし、シンボリックAIはシンボリック表現とロジックを強調していた。
大型言語モデル(LLM)の最近の進歩は、人間の言語をシンボルとして扱う際のコネクショナリストアーキテクチャの可能性を強調している。
論文 参考訳(メタデータ) (2024-07-11T14:00:53Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Towards Responsible Generative AI: A Reference Architecture for Designing Foundation Model based Agents [28.406492378232695]
ファンデーションモデルに基づくエージェントは、ファンデーションモデルの能力から自律性を引き出す。
本稿では,基礎モデルに基づくエージェントの設計におけるガイダンスとして機能するパターン指向参照アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-11-22T04:21:47Z) - Navigating the Complexity of Generative AI Adoption in Software
Engineering [6.190511747986327]
ソフトウェア工学における生成人工知能(AI)ツールの採用パターンについて検討した。
個人レベル、技術レベル、社会的レベルの影響要因を分析した。
論文 参考訳(メタデータ) (2023-07-12T11:05:19Z) - Which Design Decisions in AI-enabled Mobile Applications Contribute to
Greener AI? [7.194465440864905]
このレポートは、AI対応アプリケーションの性能に対する設計決定の影響を定量化する実証的研究を行う計画で構成されている。
我々は、複数の画像分類とテキスト分類問題を解決するために、モバイルアプリケーションに画像ベースニューラルネットワークと言語ベースニューラルネットワークの両方を実装します。
論文 参考訳(メタデータ) (2021-09-28T07:30:28Z) - Towards an Interface Description Template for AI-enabled Systems [77.34726150561087]
再利用(Reuse)は、システムアーキテクチャを既存のコンポーネントでインスタンス化しようとする、一般的なシステムアーキテクチャのアプローチである。
現在、コンポーネントが当初目的としていたものと異なるシステムで運用する可搬性を評価するために必要な情報の選択をガイドするフレームワークは存在しない。
我々は、AI対応コンポーネントの主情報をキャプチャするインターフェイス記述テンプレートの確立に向けて、現在進行中の作業について述べる。
論文 参考訳(メタデータ) (2020-07-13T20:30:26Z) - Developing and Operating Artificial Intelligence Models in Trustworthy
Autonomous Systems [8.27310353898034]
このワーク・イン・プログレス・ペーパーはAIベースのASの開発と運用のギャップを埋めることを目的としている。
私たちはそれを実践するために、新しく包括的なDevOpsアプローチを提案します。
論文 参考訳(メタデータ) (2020-03-11T17:52:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。