論文の概要: Vibe Coding vs. Agentic Coding: Fundamentals and Practical Implications of Agentic AI
- arxiv url: http://arxiv.org/abs/2505.19443v1
- Date: Mon, 26 May 2025 03:00:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:43.131201
- Title: Vibe Coding vs. Agentic Coding: Fundamentals and Practical Implications of Agentic AI
- Title(参考訳): バイブ符号化とエージェント符号化--エージェントAIの基礎と実践的意義
- Authors: Ranjan Sapkota, Konstantinos I. Roumeliotis, Manoj Karkee,
- Abstract要約: レビューでは、AI支援ソフトウェア開発の新たなパラダイムとして、バイブコーディングとエージェントコーディングの2つを包括的に分析している。
Vibeのコーディングは、インプットベースで対話的なインタラクションを通じて、直感的で、ループ内の人間間インタラクションを強調する。
エージェントコーディングは、最小限の介入でタスクを計画、実行、テスト、反復できる目標駆動エージェントを通じて、自律的なソフトウェア開発を可能にする。
- 参考スコア(独自算出の注目度): 0.36868085124383626
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This review presents a comprehensive analysis of two emerging paradigms in AI-assisted software development: vibe coding and agentic coding. While both leverage large language models (LLMs), they differ fundamentally in autonomy, architectural design, and the role of the developer. Vibe coding emphasizes intuitive, human-in-the-loop interaction through prompt-based, conversational workflows that support ideation, experimentation, and creative exploration. In contrast, agentic coding enables autonomous software development through goal-driven agents capable of planning, executing, testing, and iterating tasks with minimal human intervention. We propose a detailed taxonomy spanning conceptual foundations, execution models, feedback loops, safety mechanisms, debugging strategies, and real-world tool ecosystems. Through comparative workflow analysis and 20 detailed use cases, we illustrate how vibe systems thrive in early-stage prototyping and education, while agentic systems excel in enterprise-grade automation, codebase refactoring, and CI/CD integration. We further examine emerging trends in hybrid architectures, where natural language interfaces are coupled with autonomous execution pipelines. Finally, we articulate a future roadmap for agentic AI, outlining the infrastructure needed for trustworthy, explainable, and collaborative systems. Our findings suggest that successful AI software engineering will rely not on choosing one paradigm, but on harmonizing their strengths within a unified, human-centered development lifecycle.
- Abstract(参考訳): 本稿では,AI支援ソフトウェア開発における新たなパラダイムとして,バイブコーディングとエージェントコーディングの2つを包括的に分析する。
どちらも大きな言語モデル(LLM)を利用しているが、基本的には自律性、アーキテクチャ設計、開発者の役割が異なる。
Vibeのコーディングは、アイデア、実験、創造的な探索をサポートする、素早い会話ワークフローを通じて、直感的で、ループ内の人間間相互作用を強調する。
対照的にエージェントコーディングは、最小限の介入でタスクを計画、実行、テスト、反復できる目標駆動エージェントを通じて、自律的なソフトウェア開発を可能にする。
本稿では,概念基盤,実行モデル,フィードバックループ,安全性機構,デバッグ戦略,実世界のツールエコシステムにまたがる詳細な分類法を提案する。
比較ワークフロー分析と20の詳細なユースケースを通じて、ビブシステムはアーリーステージのプロトタイピングと教育において、エージェントシステムはエンタープライズグレードの自動化、コードベースのリファクタリング、CI/CD統合に優れています。
さらに、自然言語インターフェースと自律実行パイプラインを結合したハイブリッドアーキテクチャの新たなトレンドについても検討する。
最後に、エージェントAIの今後のロードマップを明確にし、信頼できる、説明可能な、協力的なシステムに必要なインフラの概要を説明します。
我々の研究結果は、成功したAIソフトウェアエンジニアリングは一つのパラダイムを選択するのではなく、統一された人間中心の開発ライフサイクルの中で彼らの強みを調和させることに依存していることを示唆している。
関連論文リスト
- AI Agents vs. Agentic AI: A Conceptual Taxonomy, Applications and Challenges [0.36868085124383626]
この研究はAIエージェントとエージェントAIを区別し、構造化された概念分類、アプリケーションマッピング、課題分析を提供する。
ジェネレーティブAIは前駆体として位置づけられており、AIエージェントはツールの統合、エンジニアリングの促進、推論の強化を通じて前進している。
エージェントAIシステムは、マルチエージェントコラボレーション、動的タスク分解、永続メモリ、オーケストレーション自律性によって特徴付けられるパラダイムシフトを表している。
論文 参考訳(メタデータ) (2025-05-15T16:21:33Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
大きな言語モデル(LLM)エージェントは、目標駆動の振る舞いと動的適応能力を持ち、人工知能への重要な経路を示す可能性がある。
本調査は, LLMエージェントシステムを方法論中心の分類法により体系的に分解する。
私たちの作業は、エージェントの構築方法、コラボレーション方法、時間の経過とともにどのように進化するか、という、統一されたアーキテクチャの視点を提供します。
論文 参考訳(メタデータ) (2025-03-27T12:50:17Z) - AI Automatons: AI Systems Intended to Imitate Humans [54.19152688545896]
人々の行動、仕事、能力、類似性、または人間性を模倣するように設計されたAIシステムが増加している。
このようなAIシステムの研究、設計、展開、可用性は、幅広い法的、倫理的、その他の社会的影響に対する懸念を喚起している。
論文 参考訳(メタデータ) (2025-03-04T03:55:38Z) - AI Agentic workflows and Enterprise APIs: Adapting API architectures for the age of AI agents [0.0]
生成型AIは、自律型AIエージェントの出現を触媒し、エンタープライズコンピューティングインフラストラクチャに対する前例のない課題を提示している。
現在のエンタープライズAPIアーキテクチャは、主に人間主導の事前定義されたインタラクションパターンのために設計されており、インテリジェントエージェントの動的で目標指向の振る舞いをサポートするために、それらを不備にしている。
本研究は,AIエージェントを効果的にサポートするエンタープライズAPIのアーキテクチャ適応を体系的に検討する。
論文 参考訳(メタデータ) (2025-01-22T05:55:16Z) - How Developers Interact with AI: A Taxonomy of Human-AI Collaboration in Software Engineering [8.65285948382426]
開発者とAIツール間のインタラクションタイプを分類し,11種類のインタラクションタイプを識別する。
この分類に基づいて、AIインタラクションの最適化、開発者のコントロールの改善、AI支援開発における信頼とユーザビリティの課題への対処に焦点を当てた研究課題を概説する。
論文 参考訳(メタデータ) (2025-01-15T12:53:49Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - ComfyBench: Benchmarking LLM-based Agents in ComfyUI for Autonomously Designing Collaborative AI Systems [80.69865295743149]
この研究は、LLMベースのエージェントを使用して、協調AIシステムを自律的に設計する試みである。
ComfyBenchをベースとしたComfyAgentは,エージェントが自律的に協調的なAIシステムを生成して設計できるようにするフレームワークである。
ComfyAgentは、o1-previewに匹敵する解像度を達成し、ComfyBenchの他のエージェントをはるかに上回っているが、ComfyAgentはクリエイティブタスクの15%しか解決していない。
論文 参考訳(メタデータ) (2024-09-02T17:44:10Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - An Interactive Agent Foundation Model [49.77861810045509]
本稿では,AIエージェントを訓練するための新しいマルチタスクエージェントトレーニングパラダイムを用いた対話型エージェント基礎モデルを提案する。
トレーニングパラダイムは、視覚マスク付きオートエンコーダ、言語モデリング、次世代の予測など、多様な事前学習戦略を統一する。
私たちは、ロボティクス、ゲームAI、ヘルスケアという3つの異なる領域でフレームワークのパフォーマンスを実演します。
論文 参考訳(メタデータ) (2024-02-08T18:58:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。