論文の概要: Fusion of ECG Foundation Model Embeddings to Improve Early Detection of Acute Coronary Syndromes
- arxiv url: http://arxiv.org/abs/2502.17476v1
- Date: Mon, 17 Feb 2025 04:50:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-02 02:21:22.106536
- Title: Fusion of ECG Foundation Model Embeddings to Improve Early Detection of Acute Coronary Syndromes
- Title(参考訳): 急性冠症候群早期発見のための心電図モデル埋め込みの融合
- Authors: Zeyuan Meng, Lovely Yeswanth Panchumarthi, Saurabh Kataria, Alex Fedorov, Jessica Zègre-Hemsey, Xiao Hu, Ran Xiao,
- Abstract要約: 本研究では,心電図基礎モデル,特にST-MEMとECG-FMを用いて心電図リスク評価を行う。
我々はこれらのモデルの性能を個別に評価し、融合アプローチによりそれらの埋め込みを組み合わせ、予測の精度を高める。
- 参考スコア(独自算出の注目度): 5.723893680574976
- License:
- Abstract: Acute Coronary Syndrome (ACS) is a life-threatening cardiovascular condition where early and accurate diagnosis is critical for effective treatment and improved patient outcomes. This study explores the use of ECG foundation models, specifically ST-MEM and ECG-FM, to enhance ACS risk assessment using prehospital ECG data collected in ambulances. Both models leverage self-supervised learning (SSL), with ST-MEM using a reconstruction-based approach and ECG-FM employing contrastive learning, capturing unique spatial and temporal ECG features. We evaluate the performance of these models individually and through a fusion approach, where their embeddings are combined for enhanced prediction. Results demonstrate that both foundation models outperform a baseline ResNet-50 model, with the fusion-based approach achieving the highest performance (AUROC: 0.843 +/- 0.006, AUCPR: 0.674 +/- 0.012). These findings highlight the potential of ECG foundation models for early ACS detection and motivate further exploration of advanced fusion strategies to maximize complementary feature utilization.
- Abstract(参考訳): 急性冠症候群 (ACS) は心血管疾患の1つで, 早期かつ正確な診断が重要である。
本研究では,救急車内で収集した心電図データを用いて,心電図基礎モデル,特にST-MEMとECG-FMを用いて心電図リスク評価を行う。
両モデルは自己教師付き学習(SSL)を利用しており、ST-MEMは再構成に基づくアプローチ、ECG-FMは対照的な学習を採用し、独自の空間的および時間的ECG特徴を捉えている。
我々はこれらのモデルの性能を個別に評価し、融合アプローチによりそれらの埋め込みを組み合わせ、予測の精度を高める。
その結果、両基礎モデルはベースラインのResNet-50モデルよりも優れており、融合ベースのアプローチは最高性能を達成する(AUROC:0.843 +/- 0.006, AUCPR: 0.674 +/- 0.012)。
これらの知見は、早期ACS検出のためのECG基盤モデルの可能性を強調し、相補的特徴利用を最大化するための高度な融合戦略のさらなる探求を動機付けている。
関連論文リスト
- A multimodal ensemble approach for clear cell renal cell carcinoma treatment outcome prediction [6.199310532720352]
臨床データ,マルチオミクスデータ,および病理組織学的全スライド画像(WSI)データを統合するマルチモーダルアンサンブルモデル(MMEM)を開発した。
MMEMはccRCC患者の全身生存率(OS)と無病生存率(DFS)を予測した。
論文 参考訳(メタデータ) (2024-12-10T02:51:14Z) - rECGnition_v1.0: Arrhythmia detection using cardiologist-inspired multi-modal architecture incorporating demographic attributes in ECG [3.0473237906125954]
本稿では,心電図解析と不整脈分類のための新しいマルチモーダル手法を提案する。
提案したrECGnition_v1.0アルゴリズムはクリニックへの展開の道を開く。
論文 参考訳(メタデータ) (2024-10-09T11:17:02Z) - Foundation Models for ECG: Leveraging Hybrid Self-Supervised Learning for Advanced Cardiac Diagnostics [2.948318253609515]
自己教師付き学習(SSL)法で強化された基礎モデルを用いることで、心電図(ECG)解析に対する革新的なアプローチが提示される。
本研究は、生成学習やコントラスト学習を含むSSL手法を利用して、ECGの基礎モデルを包括的に評価する。
心臓診断の精度と信頼性を向上させる基礎モデルのためのハイブリッドラーニング(HL)を開発した。
論文 参考訳(メタデータ) (2024-06-26T02:24:13Z) - ECG-SMART-NET: A Deep Learning Architecture for Precise ECG Diagnosis of Occlusion Myocardial Infarction [1.7894680263068135]
心筋梗塞の診断にはECG--NETが有用である。
OMIは1つ以上の冠動脈の完全閉塞を特徴とする重度の心臓発作である。
OMI症例の3分の2は、12誘導心電図から視覚的に識別することが困難である。
論文 参考訳(メタデータ) (2024-05-08T19:59:16Z) - DeScoD-ECG: Deep Score-Based Diffusion Model for ECG Baseline Wander and
Noise Removal [4.998493052085877]
心電図(ECG)信号は、ベースラインダウトなど、一般的にノイズ干渉に悩まされる。
本稿では,新しいECGベースラインホアリングとノイズ除去技術を提案する。
論文 参考訳(メタデータ) (2022-07-31T23:39:33Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - COVI-AgentSim: an Agent-based Model for Evaluating Methods of Digital
Contact Tracing [68.68882022019272]
COVI-AgentSimは、ウイルス学、病気の進行、社会的接触ネットワーク、移動パターンに基づくエージェントベースのコンパートメンタルシミュレータである。
1)バイナリテスト結果に基づいてバイナリレコメンデーションを割り当てる標準バイナリコンタクトトレース (BCT) と,2) 多様な特徴に基づいてグレードレベルのレコメンデーションを割り当てる特徴ベースコンタクトトレース (FCT) のルールベースの手法である。
論文 参考訳(メタデータ) (2020-10-30T00:47:01Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。