Detecting Long QT Syndrome and First-Degree Atrioventricular Block using Single-Lead AI-ECG: A Multi-Center Real-World Study
- URL: http://arxiv.org/abs/2502.17499v2
- Date: Sun, 27 Apr 2025 02:46:38 GMT
- Title: Detecting Long QT Syndrome and First-Degree Atrioventricular Block using Single-Lead AI-ECG: A Multi-Center Real-World Study
- Authors: Sumei Fan, Deyun Zhang, Yue Wang, Shijia Geng, Kun Lu, Meng Sang, Weilun Xu, Haixue Wang, Qinghao Zhao, Chuandong Cheng, Peng Wang, Shenda Hong,
- Abstract summary: Home-based single-lead AI-ECG devices have enabled continuous, real-world cardiac monitoring.<n>In this study, we assessed FeatureDB, an ECG measurements computation algorithm, in the context of single-lead monitoring.<n>In detecting LQTS and AVBI, FeatureDB demonstrated diagnostic performance comparable to commercial ECG systems.
- Score: 12.802249610851181
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Home-based single-lead AI-ECG devices have enabled continuous, real-world cardiac monitoring. However, the accuracy of parameter calculations from single-lead AI-ECG algorithm remains to be fully validated, which is critical for conditions such as Long QT Syndrome (LQTS) and First-Degree Atrioventricular Block (AVBI). In this multicenter study, we assessed FeatureDB, an ECG measurements computation algorithm, in the context of single-lead monitoring using three annotated datasets: PTB-XL+ (n=21,354), CSE (n=105), and HeartVoice-ECG-lite (n=369). FeatureDB showed strong correlation with standard ECG machines (12SL and Uni-G) in key measurements (PR, QRS, QT, QTc), and high agreement confirmed by Bland-Altman analysis. In detecting LQTS (AUC=0.786) and AVBI (AUC=0.684), FeatureDB demonstrated diagnostic performance comparable to commercial ECG systems (12SL: 0.859/0.716; Uni-G: 0.817/0.605), significantly outperforming ECGDeli (0.501/0.569). Notably, FeatureDB can operate locally on resource-limited devices, facilitating use in low-connectivity settings. These findings confirm the clinical reliability of FeatureDB for single-lead ECG diagnostics and highlight its potential to bridge traditional ECG diagnostics with wearable technology for scalable cardiovascular monitoring and early intervention.
Related papers
- TolerantECG: A Foundation Model for Imperfect Electrocardiogram [6.8878798499351]
TolerantECG is a foundation model for ECG signals that is robust to noise and capable of functioning with arbitrary subsets of the standard 12-lead ECG.<n>TolerantECG training combines contrastive and self-supervised learning frameworks to jointly learn ECG signal representations.<n> benchmarking results demonstrate that TolerantECG consistently ranks as the best or second-best performer across various ECG signal conditions.
arXiv Detail & Related papers (2025-07-14T03:48:35Z) - xLSTM-ECG: Multi-label ECG Classification via Feature Fusion with xLSTM [14.02717596836022]
We propose xLSTM-ECG, a novel approach for multi-label classification of ECG signals.
To the best of our knowledge, this work represents the first design and application of xLSTM modules specifically adapted for multi-label ECG classification.
arXiv Detail & Related papers (2025-04-14T16:12:46Z) - Multimodal Lead-Specific Modeling of ECG for Low-Cost Pulmonary Hypertension Assessment [71.69065905466567]
Pulmonary hypertension (PH) is frequently underdiagnosed in low- and middle-income countries (LMICs) due to the scarcity of advanced diagnostic tools.
We propose Lead-Specific Electrocardiogram Multimodal Variational Autoencoder (LS-EMVAE), a model pre-trained on large-population 12L-ECG data.
LS-EMVAE makes better predictions on both 12L-ECG and 6L-ECG at inference, making it an equitable solution for areas with limited or no diagnostic tools.
arXiv Detail & Related papers (2025-03-03T16:16:38Z) - Arrhythmia Classification from 12-Lead ECG Signals Using Convolutional and Transformer-Based Deep Learning Models [0.0]
In Romania, cardiovascular problems are the leading cause of death, accounting for nearly one-third of annual fatalities.
This article aims to explore efficient, light-weight and rapid methods for arrhythmia diagnosis, in resource-constrained healthcare settings.
arXiv Detail & Related papers (2025-02-25T06:17:52Z) - Finetuning and Quantization of EEG-Based Foundational BioSignal Models on ECG and PPG Data for Blood Pressure Estimation [53.2981100111204]
Photoplethysmography and electrocardiography can potentially enable continuous blood pressure (BP) monitoring.
Yet accurate and robust machine learning (ML) models remains challenging due to variability in data quality and patient-specific factors.
In this work, we investigate whether a model pre-trained on one modality can effectively be exploited to improve the accuracy of a different signal type.
Our approach achieves near state-of-the-art accuracy for diastolic BP and surpasses by 1.5x the accuracy of prior works for systolic BP.
arXiv Detail & Related papers (2025-02-10T13:33:12Z) - rECGnition_v1.0: Arrhythmia detection using cardiologist-inspired multi-modal architecture incorporating demographic attributes in ECG [3.0473237906125954]
We propose a novel multi-modal methodology for ECG analysis and arrhythmia classification.
The proposed rECGnition_v1.0 algorithm paves the way for its deployment in clinics.
arXiv Detail & Related papers (2024-10-09T11:17:02Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - An Electrocardiogram Foundation Model Built on over 10 Million Recordings with External Evaluation across Multiple Domains [17.809094003643523]
ECG Foundation Model (ECGFounder) trained on over 10 million ECGs with 150 label categories from Harvard-Emory ECG Database.
ECGFounder achieves expert-level performance on internal validation sets, with AUROC exceeding 0.95 for eighty diagnoses.
When fine-tuned, ECGFounder outperforms baseline models in demographic analysis, clinical event detection, and cross-modality cardiac rhythm diagnosis.
arXiv Detail & Related papers (2024-10-05T12:12:02Z) - Self-supervised Anomaly Detection Pretraining Enhances Long-tail ECG Diagnosis [32.37717219026923]
Current computer-aided ECG diagnostic systems struggle with the underdetection of rare but critical cardiac anomalies.
This study introduces a novel approach using self-supervised anomaly detection pretraining to address this limitation.
The anomaly detection model is specifically designed to detect and localize subtle deviations from normal cardiac patterns.
arXiv Detail & Related papers (2024-08-30T09:48:47Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions.
Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation.
We propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions.
arXiv Detail & Related papers (2024-03-07T23:20:56Z) - A Novel Deep Learning Technique for Morphology Preserved Fetal ECG
Extraction from Mother ECG using 1D-CycleGAN [3.4162369786064497]
A non-invasive fetal electrocardiogram (fECG) can easily detect abnormalities in the developing heart.
The low amplitude of the fECG, systematic and ambient noises, typical signal extraction methods are unable to produce satisfactory fECG.
Our approach, which is based on 1D CycleGAN, can reconstruct the fECG signal from the mECG signal.
The accuracy of our solution for fetal heart rate and R-R interval length is comparable to existing state-of-the-art techniques.
arXiv Detail & Related papers (2023-09-25T19:38:51Z) - Digital twinning of cardiac electrophysiology models from the surface
ECG: a geodesic backpropagation approach [39.36827689390718]
We introduce a novel method, Geodesic-BP, to solve the inverse eikonal problem.
We show that Geodesic-BP can reconstruct a simulated cardiac activation with high accuracy in a synthetic test case.
Given the future shift towards personalized medicine, Geodesic-BP has the potential to help in future functionalizations of cardiac models.
arXiv Detail & Related papers (2023-08-16T14:57:12Z) - IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG
Classification [0.9449650062296824]
In clinical settings, a cardiologist makes a diagnosis based on the standard 12-channel ECG recording.
We propose a model that leverages the multiple-channel information available in the standard ECG recordings and learns patterns at the beat, rhythm, and channel level.
The experimental results show that our model achieved a macro-averaged ROC-AUC score of 0.9216, mean accuracy of 88.85%, and a maximum F1 score of 0.8057 on the PTB-XL dataset.
arXiv Detail & Related papers (2022-04-06T16:29:10Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - Estimation of atrial fibrillation from lead-I ECGs: Comparison with
cardiologists and machine learning model (CurAlive), a clinical validation
study [0.0]
This study presents a method to detect atrial fibrillation with lead-I ECGs using artificial intelligence.
The aim of the study is to compare the accuracy of the diagnoses estimated by cardiologists and artificial intelligence over lead-I ECGs.
arXiv Detail & Related papers (2021-04-15T12:50:16Z) - Robust R-Peak Detection in Low-Quality Holter ECGs using 1D
Convolutional Neural Network [20.198563425074372]
This paper presents a generic and robust system for R-peak detection in Holter ECG signals.
A novel implementation of the 1D Convolutional Neural Network (CNN) is used integrated with a verification model to reduce the number of false alarms.
Experimental results demonstrate that the proposed systematic approach achieves 99.30% F1-score, 99.69% recall, and 98.91% precision in CPSC-DB.
arXiv Detail & Related papers (2020-12-29T21:10:54Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - Multilabel 12-Lead Electrocardiogram Classification Using Gradient
Boosting Tree Ensemble [64.29529357862955]
We build an algorithm using gradient boosted tree ensembles fitted on morphology and signal processing features to classify ECG diagnosis.
For each lead, we derive features from heart rate variability, PQRST template shape, and the full signal waveform.
We join the features of all 12 leads to fit an ensemble of gradient boosting decision trees to predict probabilities of ECG instances belonging to each class.
arXiv Detail & Related papers (2020-10-21T18:11:36Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.