Theory-guided Pseudo-spectral Full Waveform Inversion via Deep Neural Networks
- URL: http://arxiv.org/abs/2502.17624v1
- Date: Mon, 24 Feb 2025 20:18:55 GMT
- Title: Theory-guided Pseudo-spectral Full Waveform Inversion via Deep Neural Networks
- Authors: Christopher Zerafa, Pauline Galea, Cristiana Sebu,
- Abstract summary: Full-Waveform Inversion seeks to achieve a high-resolution model of the subsurface.<n>Deep Learning techniques have emerged as excellent optimization frameworks.<n>This work addresses the lacuna that exists in incorporating the pseudo-spectral approach within Deep Learning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Full-Waveform Inversion seeks to achieve a high-resolution model of the subsurface through the application of multi-variate optimization to the seismic inverse problem. Although now a mature technology, FWI has limitations related to the choice of the appropriate solver for the forward problem in challenging environments requiring complex assumptions, and very wide angle and multi-azimuth data necessary for full reconstruction are often not available. Deep Learning techniques have emerged as excellent optimization frameworks. Data-driven methods do not impose a wave propagation model and are not exposed to modelling errors. On the contrary, deterministic models are governed by the laws of physics. Seismic FWI has recently started to be investigated as a Deep Learning framework. Focus has been on the time-domain, while the pseudo-spectral domain has not been yet explored. However, classical FWI experienced major breakthroughs when pseudo-spectral approaches were employed. This work addresses the lacuna that exists in incorporating the pseudo-spectral approach within Deep Learning. This has been done by re-formulating the pseudo-spectral FWI problem as a Deep Learning algorithm for a theory-driven pseudo-spectral approach. A novel Recurrent Neural Network framework is proposed. This is qualitatively assessed on synthetic data, applied to a two-dimensional Marmousi dataset and evaluated against deterministic and time-based approaches. Pseudo-spectral theory-guided FWI using RNN was shown to be more accurate than classical FWI with only 0.05 error tolerance and 1.45\% relative percent-age error. Indeed, this provides more stable convergence, able to identify faults better and has more low frequency content than classical FWI. Moreover, RNN was more suited than classical FWI at edge detection in the shallow and deep sections due to cleaner receiver residuals.
Related papers
- Leveraging Deep Operator Networks (DeepONet) for Acoustic Full Waveform Inversion (FWI) [2.3036557956750867]
Full Waveform Inversion (FWI) is an important technique considered in subsurface property prediction.
FWI solves the inverse problem of predicting high-resolution Earth interior models from seismic data.
In this study, we introduce a novel methodology that leverages Deep Operator Networks (DeepONet) to attempt to improve both the efficiency and accuracy of FWI.
arXiv Detail & Related papers (2025-04-14T21:24:43Z) - Data-Driven and Theory-Guided Pseudo-Spectral Seismic Imaging Using Deep Neural Network Architectures [0.0]
Full Waveform Inversion (FWI) reconstructs high-resolution subsurface models.
FWI faces challenges with solver selection and data availability.
Deep Learning (DL) offers a promising alternative, bridging data-driven and physics-based methods.
This thesis integrates pseudo-spectral FWI into DL, formulating both data-driven and theory-guided approaches.
arXiv Detail & Related papers (2025-02-26T05:46:53Z) - Data-Driven Pseudo-spectral Full Waveform Inversion via Deep Neural Networks [0.0]
We re-formulate the pseudo-spectral FWI problem as a Deep Learning algorithm for a data-driven pseudo-spectral approach.<n>Inversion of data-driven pseudo-spectralimat was found to outperform classical FWI for deeper and over-thrust areas.
arXiv Detail & Related papers (2025-02-24T19:50:36Z) - Impact of Recurrent Neural Networks and Deep Learning Frameworks on Real-time Lightweight Time Series Anomaly Detection [0.0]
It is unclear how the use of different types of RNNs available in various deep learning frameworks affects the performance of these anomaly detection approaches.
We reviewed several state-of-the-art approaches and implemented a representative anomaly detection approach using well-known RNN variants.
A comprehensive evaluation is then conducted to analyze the performance of each implementation across real-world, open-source time series datasets.
arXiv Detail & Related papers (2024-07-26T00:38:51Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - An Unsupervised Deep Learning Approach for the Wave Equation Inverse
Problem [12.676629870617337]
Full-waveform inversion (FWI) is a powerful geophysical imaging technique that infers high-resolution subsurface physical parameters.
Due to limitations in observation, limited shots or receivers, and random noise, conventional inversion methods are confronted with numerous challenges.
We provide an unsupervised learning approach aimed at accurately reconstructing physical velocity parameters.
arXiv Detail & Related papers (2023-11-08T08:39:33Z) - Implicit Full Waveform Inversion with Deep Neural Representation [91.3755431537592]
We propose the implicit full waveform inversion (IFWI) algorithm using continuously and implicitly defined deep neural representations.
Both theoretical and experimental analyses indicates that, given a random initial model, IFWI is able to converge to the global minimum.
IFWI has a certain degree of robustness and strong generalization ability that are exemplified in the experiments of various 2D geological models.
arXiv Detail & Related papers (2022-09-08T01:54:50Z) - Deep Neural Network Based Accelerated Failure Time Models using Rank
Loss [0.0]
An accelerated failure time (AFT) model assumes a log-linear relationship between failure times and a set of covariates.
Deep neural networks (DNNs) have received a focal attention over the past decades and have achieved remarkable success in a variety of fields.
We propose to apply DNNs in fitting AFT models using a Gehan-type loss, combined with a sub-sampling technique.
arXiv Detail & Related papers (2022-06-13T08:38:18Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Revisit Geophysical Imaging in A New View of Physics-informed Generative
Adversarial Learning [2.12121796606941]
Full waveform inversion produces high-resolution subsurface models.
FWI with least-squares function suffers from many drawbacks such as the local-minima problem.
Recent works relying on partial differential equations and neural networks show promising performance for two-dimensional FWI.
We propose an unsupervised learning paradigm that integrates wave equation with a discriminate network to accurately estimate the physically consistent models.
arXiv Detail & Related papers (2021-09-23T15:54:40Z) - Non-Gradient Manifold Neural Network [79.44066256794187]
Deep neural network (DNN) generally takes thousands of iterations to optimize via gradient descent.
We propose a novel manifold neural network based on non-gradient optimization.
arXiv Detail & Related papers (2021-06-15T06:39:13Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space.
Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations.
arXiv Detail & Related papers (2020-12-03T10:17:30Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.