論文の概要: Say Less, Mean More: Leveraging Pragmatics in Retrieval-Augmented Generation
- arxiv url: http://arxiv.org/abs/2502.17839v1
- Date: Tue, 25 Feb 2025 04:38:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 17:42:45.715925
- Title: Say Less, Mean More: Leveraging Pragmatics in Retrieval-Augmented Generation
- Title(参考訳): さようなら、もっと意味:検索機能強化世代における実用的手法の活用
- Authors: Haris Riaz, Ellen Riloff, Mihai Surdeanu,
- Abstract要約: 本稿では,検索拡張世代(RAG)フレームワークに実用的原理を注入する,単純で教師なしの手法を提案する。
提案手法はまず,RAGが検索した文書プール内のどの文が,手元にある質問に最も関連があるかを識別し,入力された質問に対処するすべてのトピックをカバーし,そのコンテキスト内でこれらの文をハイライトする。
PubHealthでは19.7%、ARC-Challengeでは10%まで精度が向上している。
- 参考スコア(独自算出の注目度): 27.892421858384594
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a simple, unsupervised method that injects pragmatic principles in retrieval-augmented generation (RAG) frameworks such as Dense Passage Retrieval~\cite{karpukhin2020densepassageretrievalopendomain} to enhance the utility of retrieved contexts. Our approach first identifies which sentences in a pool of documents retrieved by RAG are most relevant to the question at hand, cover all the topics addressed in the input question and no more, and then highlights these sentences within their context, before they are provided to the LLM, without truncating or altering the context in any other way. We show that this simple idea brings consistent improvements in experiments on three question answering tasks (ARC-Challenge, PubHealth and PopQA) using five different LLMs. It notably enhances relative accuracy by up to 19.7\% on PubHealth and 10\% on ARC-Challenge compared to a conventional RAG system.
- Abstract(参考訳): Dense Passage Retrieval~\cite{karpukhin2020densepassageretrievalopen domain} のような検索拡張世代 (RAG) フレームワークに実用的原則を注入し,検索コンテキストの有用性を高める。
提案手法はまず,RAGが検索した文書プール内のどの文が,手元にある質問に最も関連があるかを識別し,入力された質問に対処するすべてのトピックを網羅し,それらの文をLCMに提供する前に,そのコンテキスト内でハイライトする。
このシンプルなアイデアは、5つの異なるLCMを用いて3つの質問応答タスク(ARC-Challenge, PubHealth, PopQA)に対して一貫した改善をもたらすことを示す。
従来のRAGシステムと比較して、PubHealthでは19.7 %、ARC-Challengeでは10 %の相対精度が顕著に向上する。
関連論文リスト
- Insight-RAG: Enhancing LLMs with Insight-Driven Augmentation [4.390998479503661]
本稿では,インサイトに基づく文書検索のための新しいフレームワークであるInsight-RAGを提案する。
Insight-RAG の初期段階では,従来の検索手法の代わりに LLM を用いて入力クエリとタスクを解析する。
従来のRAG手法と同様に、元のクエリを抽出した洞察と統合することにより、最終的なLCMを用いて、文脈的に豊かで正確な応答を生成する。
論文 参考訳(メタデータ) (2025-03-31T19:50:27Z) - CORAL: Benchmarking Multi-turn Conversational Retrieval-Augmentation Generation [68.81271028921647]
我々は,現実的なマルチターン対話環境におけるRAGシステム評価のためのベンチマークであるCORALを紹介する。
コラルにはウィキペディアから自動的に派生した多様な情報検索会話が含まれている。
対話型RAGの3つの中核的なタスク、すなわち、通過検索、応答生成、および引用ラベリングをサポートする。
論文 参考訳(メタデータ) (2024-10-30T15:06:32Z) - Speculative RAG: Enhancing Retrieval Augmented Generation through Drafting [68.90949377014742]
Speculative RAG(投機的RAG)は、より大規模なジェネラリストLMを利用して、より小さな蒸留専門のLMによって並列に生成された複数のRAGドラフトを効率よく検証するフレームワークである。
提案手法は,より小さな専門家のLMにドラフト作成を委譲することでRAGを加速し,より大きなジェネラリストのLMがドラフトに1回の検証パスを実行する。
PubHealthの従来のRAGシステムと比較して、レイテンシを50.83%削減しながら、最大12.97%の精度向上を実現している。
論文 参考訳(メタデータ) (2024-07-11T06:50:19Z) - Ground Every Sentence: Improving Retrieval-Augmented LLMs with Interleaved Reference-Claim Generation [51.8188846284153]
RAGは大規模言語モデル(LLM)を強化するために広く採用されている。
分散テキスト生成(ATG)が注目され、RAGにおけるモデルの応答をサポートするための引用を提供する。
本稿では,ReClaim(Refer & Claim)と呼ばれる詳細なATG手法を提案する。
論文 参考訳(メタデータ) (2024-07-01T20:47:47Z) - QPaug: Question and Passage Augmentation for Open-Domain Question Answering of LLMs [5.09189220106765]
オープンドメイン問合せタスクのための大規模言語モデル(LLM)を介してQPaug(Q and passage augmentation)と呼ばれるシンプルで効率的な手法を提案する。
実験の結果,QPaugは従来の最先端技術よりも優れており,既存のRAG法よりも大きな性能向上を実現していることがわかった。
論文 参考訳(メタデータ) (2024-06-20T12:59:27Z) - RE-RAG: Improving Open-Domain QA Performance and Interpretability with Relevance Estimator in Retrieval-Augmented Generation [5.10832476049103]
本稿では,従来のリランカが行ったようなコンテキスト間の相対的関連性を提供する関連性推定器(RE)を提案する。
我々は,小型発電機(sLM)で訓練したREが,REとともに微調整されたsLMを改良するだけでなく,従来は未参照の大規模言語モデルも改善できることを示した。
論文 参考訳(メタデータ) (2024-06-09T14:11:19Z) - SuRe: Summarizing Retrievals using Answer Candidates for Open-domain QA of LLMs [85.54906813106683]
大規模言語モデル(LLM)を用いたオープンドメイン質問応答(ODQA)の簡易かつ効果的なフレームワークを提案する。
SuRe は LLM が与えられた質問に対するより正確な回答を予測するのに役立つ。
様々なODQAベンチマークの実験結果はSuReの優位性を示し、標準的なプロンプトアプローチよりも4.6%、F1スコアが4.0%向上した。
論文 参考訳(メタデータ) (2024-04-17T01:15:54Z) - Boosting Conversational Question Answering with Fine-Grained Retrieval-Augmentation and Self-Check [25.63538452425097]
本稿では,対話型質問応答のための細粒度検索と自己チェックを組み込んだ対話レベルのRAG手法を提案する。
特に,本手法は,対話型質問精算器,きめ細かい検索器,自己チェックに基づく応答生成器の3つのコンポーネントから構成される。
論文 参考訳(メタデータ) (2024-03-27T04:20:18Z) - The Power of Noise: Redefining Retrieval for RAG Systems [19.387105120040157]
Retrieval-Augmented Generation (RAG) は、大規模言語モデルの事前学習知識を超えて拡張する方法として登場した。
我々は、RAGソリューションが取得すべきパスIRシステムの種類に焦点を当てる。
論文 参考訳(メタデータ) (2024-01-26T14:14:59Z) - Modeling Uncertainty and Using Post-fusion as Fallback Improves Retrieval Augmented Generation with LLMs [80.74263278847063]
検索されたパスと大きな言語モデル(LLM)の統合は、オープンドメインの質問応答の改善に大きく貢献している。
本稿では,検索したパスをLLMと組み合わせて回答生成を向上させる方法について検討する。
論文 参考訳(メタデータ) (2023-08-24T05:26:54Z) - Phrase Retrieval Learns Passage Retrieval, Too [77.57208968326422]
文節検索が,文節や文書を含む粗いレベルの検索の基盤となるかを検討する。
句検索システムでは,句検索の精度が向上し,句検索の精度が向上していることを示す。
また,句のフィルタリングやベクトル量子化により,インデックスのサイズを4~10倍に削減できることを示す。
論文 参考訳(メタデータ) (2021-09-16T17:42:45Z) - Generation-Augmented Retrieval for Open-domain Question Answering [134.27768711201202]
GAR(Generation-Augmented Retrieval)は、オープンドメインの質問に答える機能である。
クエリーに対して多様なコンテキストを生成することは、結果の融合が常により良い検索精度をもたらすので有益であることを示す。
GARは、抽出読取装置を備えた場合、抽出QA設定の下で、自然質問およびトリビアQAデータセットの最先端性能を達成する。
論文 参考訳(メタデータ) (2020-09-17T23:08:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。