Spatial-RAG: Spatial Retrieval Augmented Generation for Real-World Spatial Reasoning Questions
- URL: http://arxiv.org/abs/2502.18470v3
- Date: Fri, 14 Mar 2025 02:48:55 GMT
- Title: Spatial-RAG: Spatial Retrieval Augmented Generation for Real-World Spatial Reasoning Questions
- Authors: Dazhou Yu, Riyang Bao, Gengchen Mai, Liang Zhao,
- Abstract summary: We propose Spatial Retrieval-Augmented Generation (Spatial-RAG), a framework that extends RAG to spatial tasks.<n>A multi-objective ranking strategy balances spatial constraints and semantic relevance, while an LLM-guided generator ensures coherent responses.
- Score: 5.744799747144805
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Spatial reasoning remains a challenge for Large Language Models (LLMs), which struggle with spatial data retrieval and reasoning. We propose Spatial Retrieval-Augmented Generation (Spatial-RAG), a framework that extends RAG to spatial tasks by integrating sparse spatial retrieval (spatial databases) and dense semantic retrieval (LLM-based similarity). A multi-objective ranking strategy balances spatial constraints and semantic relevance, while an LLM-guided generator ensures coherent responses. Experiments on a real-world tourism dataset show that Spatial-RAG significantly improves spatial question answering, bridging the gap between LLMs and spatial intelligence.
Related papers
- OmniGeo: Towards a Multimodal Large Language Models for Geospatial Artificial Intelligence [51.0456395687016]
multimodal large language models (LLMs) have opened new frontiers in artificial intelligence.
We propose a MLLM (OmniGeo) tailored to geospatial applications.
By combining the strengths of natural language understanding and spatial reasoning, our model enhances the ability of instruction following and the accuracy of GeoAI systems.
arXiv Detail & Related papers (2025-03-20T16:45:48Z) - EmbodiedVSR: Dynamic Scene Graph-Guided Chain-of-Thought Reasoning for Visual Spatial Tasks [24.41705039390567]
EmbodiedVSR (Embodied Visual Spatial Reasoning) is a novel framework that integrates dynamic scene graph-guided Chain-of-Thought (CoT) reasoning.
Our method enables zero-shot spatial reasoning without task-specific fine-tuning.
Experiments demonstrate that our framework significantly outperforms existing MLLM-based methods in accuracy and reasoning coherence.
arXiv Detail & Related papers (2025-03-14T05:06:07Z) - SpatialCoT: Advancing Spatial Reasoning through Coordinate Alignment and Chain-of-Thought for Embodied Task Planning [42.487500113839666]
We propose a novel approach to bolster the spatial reasoning capabilities of Vision-Language Models (VLMs)<n>Our approach comprises two stages: spatial coordinate bi-directional alignment, and chain-of-thought spatial grounding.<n>We evaluate our method on challenging navigation and manipulation tasks, both in simulation and real-world settings.
arXiv Detail & Related papers (2025-01-17T09:46:27Z) - An Empirical Analysis on Spatial Reasoning Capabilities of Large Multimodal Models [56.537253374781876]
Large Multimodal Models (LMMs) have achieved strong performance across a range of vision and language tasks.
However, their spatial reasoning capabilities are under-investigated.
We construct a novel VQA dataset, Spatial-MM, to comprehensively study LMMs' spatial understanding and reasoning capabilities.
arXiv Detail & Related papers (2024-11-09T03:07:33Z) - Hyperbolic Fine-tuning for Large Language Models [56.54715487997674]
This study investigates the non-Euclidean characteristics of large language models (LLMs)
We show that token embeddings exhibit a high degree of hyperbolicity, indicating a latent tree-like structure in the embedding space.
We introduce a new method called hyperbolic low-rank efficient fine-tuning, HypLoRA, that performs low-rank adaptation directly on the hyperbolic manifold.
arXiv Detail & Related papers (2024-10-05T02:58:25Z) - Embodied-RAG: General Non-parametric Embodied Memory for Retrieval and Generation [69.01029651113386]
Embodied-RAG is a framework that enhances the model of an embodied agent with a non-parametric memory system.<n>At its core, Embodied-RAG's memory is structured as a semantic forest, storing language descriptions at varying levels of detail.<n>We demonstrate that Embodied-RAG effectively bridges RAG to the robotics domain, successfully handling over 250 explanation and navigation queries.
arXiv Detail & Related papers (2024-09-26T21:44:11Z) - SpaRC and SpaRP: Spatial Reasoning Characterization and Path Generation for Understanding Spatial Reasoning Capability of Large Language Models [70.01883340129204]
spatial reasoning is a crucial component of both biological and artificial intelligence.
We present a comprehensive study of the capability of current state-of-the-art large language models (LLMs) on spatial reasoning.
arXiv Detail & Related papers (2024-06-07T01:06:34Z) - SpatialRGPT: Grounded Spatial Reasoning in Vision Language Models [68.13636352687257]
We introduce Spatial Region GPT (SpatialRGPT) to enhance VLMs' spatial perception and reasoning capabilities.
During inference, when provided with user-specified region proposals, SpatialRGPT can accurately perceive their relative directions and distances.
Our results demonstrate that SpatialRGPT significantly enhances performance in spatial reasoning tasks, both with and without local region prompts.
arXiv Detail & Related papers (2024-06-03T17:59:06Z) - Deep spatial context: when attention-based models meet spatial
regression [8.90978723839271]
'Deep spatial context' (DSCon) method serves for investigation of the attention-based vision models using the concept of spatial context.
It was inspired by histopathologists, however, the method can be applied to various domains.
arXiv Detail & Related papers (2024-01-18T15:08:42Z) - A systematic review of geospatial location embedding approaches in large
language models: A path to spatial AI systems [0.0]
Geospatial Location Embedding (GLE) helps a Large Language Model (LLM) assimilate and analyze spatial data.
GLEs signal the need for a Spatial Foundation/Language Model (SLM) that embeds spatial knowing within the model architecture.
arXiv Detail & Related papers (2024-01-12T12:43:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.