論文の概要: FinBloom: Knowledge Grounding Large Language Model with Real-time Financial Data
- arxiv url: http://arxiv.org/abs/2502.18471v1
- Date: Tue, 04 Feb 2025 06:51:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-02 03:56:23.150425
- Title: FinBloom: Knowledge Grounding Large Language Model with Real-time Financial Data
- Title(参考訳): FinBloom: リアルタイム財務データを用いた大規模言語モデルを構築する知識
- Authors: Ankur Sinha, Chaitanya Agarwal, Pekka Malo,
- Abstract要約: 我々は、金融クエリを扱うための大規模言語モデルのための知識基盤アプローチであるFinancial Agentを紹介する。
我々はFinBloom 7B(カスタム70億のパラメータLDM)を1400万の金融ニュース記事で訓練する。
このエージェントは、適切な財務状況を生成し、効率的なリアルタイムデータ検索を可能にする。
- 参考スコア(独自算出の注目度): 1.8434042562191815
- License:
- Abstract: Large language models (LLMs) excel at generating human-like responses but often struggle with interactive tasks that require access to real-time information. This limitation poses challenges in finance, where models must access up-to-date information, such as recent news or price movements, to support decision-making. To address this, we introduce Financial Agent, a knowledge-grounding approach for LLMs to handle financial queries using real-time text and tabular data. Our contributions are threefold: First, we develop a Financial Context Dataset of over 50,000 financial queries paired with the required context. Second, we train FinBloom 7B, a custom 7 billion parameter LLM, on 14 million financial news articles from Reuters and Deutsche Presse-Agentur, alongside 12 million Securities and Exchange Commission (SEC) filings. Third, we fine-tune FinBloom 7B using the Financial Context Dataset to serve as a Financial Agent. This agent generates relevant financial context, enabling efficient real-time data retrieval to answer user queries. By reducing latency and eliminating the need for users to manually provide accurate data, our approach significantly enhances the capability of LLMs to handle dynamic financial tasks. Our proposed approach makes real-time financial decisions, algorithmic trading and other related tasks streamlined, and is valuable in contexts with high-velocity data flows.
- Abstract(参考訳): 大規模言語モデル(LLM)は、人間のような応答を生成するのに優れるが、リアルタイム情報へのアクセスを必要とする対話的なタスクにしばしば苦労する。
この制限は、モデルが意思決定をサポートするために、最近のニュースや価格運動のような最新の情報にアクセスしなければならない金融の課題を引き起こす。
そこで本研究では,リアルタイムテキストと表データを用いた金融クエリ処理のための知識基盤手法であるFinancial Agentを紹介する。
まず、必要なコンテキストと組み合わせた5万以上の金融クエリからなる金融コンテキストデータセットを開発します。
次に、Reuters(ロイター)とDeutsche Presse-Agentur(Deutsche Presse-Agentur)の1400万件の金融ニュース記事と、証券取引委員会(SEC)の申請書に、70億のカスタムパラメータであるFinBloom 7Bを訓練する。
第3に、ファイナンシャル・コンテキスト・データセットを使用してFinBloom 7Bを微調整し、ファイナンシャル・エージェントとして機能させる。
このエージェントは、ユーザの問い合わせに応答する効率的なリアルタイムデータ検索を可能にする、関連する財務状況を生成する。
レイテンシを低減し、ユーザが手動で正確なデータを提供する必要をなくすことで、当社のアプローチは、動的な財務タスクを処理するLLMの能力を大幅に向上させる。
提案手法は,リアルタイムな金融決定,アルゴリズム取引,その他の関連タスクを合理化し,高速度データフローのコンテキストにおいて有用である。
関連論文リスト
- Open-FinLLMs: Open Multimodal Large Language Models for Financial Applications [90.67346776473241]
大規模言語モデル(LLM)は高度な金融アプリケーションを持っているが、十分な財務知識がなく、テーブルや時系列データといったマルチモーダル入力に関わるタスクに苦労することが多い。
我々は、総合的な財務知識をテキスト、テーブル、時系列データに組み込む一連の金融LLMであるtextitOpen-FinLLMsを紹介する。
また、複雑な財務データ型を扱うために、1.43Mの画像テキスト命令で訓練されたマルチモーダルLLMであるFinLLaVAについても紹介する。
論文 参考訳(メタデータ) (2024-08-20T16:15:28Z) - SNFinLLM: Systematic and Nuanced Financial Domain Adaptation of Chinese Large Language Models [6.639972934967109]
大規模言語モデル (LLM) は、金融業界において自然言語処理を推進するための強力なツールとなっている。
SNFinLLMという中国の金融ドメイン向けに設計された新しい大規模言語モデルを提案する。
SNFinLLMは、質問への回答、財務調査レポートの要約、感情の分析、財務計算の実行など、ドメイン固有のタスクに優れています。
論文 参考訳(メタデータ) (2024-08-05T08:24:24Z) - CatMemo at the FinLLM Challenge Task: Fine-Tuning Large Language Models using Data Fusion in Financial Applications [10.225210627594894]
IJCAI-2024 FinLLMの課題に対して,金融業務の3つの重要な領域におけるLLMの能力について検討した。
金融分類、財務文書要約、単一株式取引について検討する。
提案手法は,これらの多様なタスクを包括的かつ総合的に処理することを目的としており,LLMの多様かつ複雑な財務課題への対処能力の向上と意思決定能力の向上を図っている。
論文 参考訳(メタデータ) (2024-07-02T05:04:13Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
本稿では,Large Language Models (LLM) 埋め込みを用いた財務データにおける異常検出の新しい手法を提案する。
実験により,LLMが異常検出に有用な情報をもたらし,モデルがベースラインを上回っていることが確認された。
論文 参考訳(メタデータ) (2024-06-05T20:19:09Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - FinBen: A Holistic Financial Benchmark for Large Language Models [75.09474986283394]
FinBenは、24の財務タスクにまたがる36のデータセットを含む、最初の大規模なオープンソース評価ベンチマークである。
FinBenは、幅広いタスクとデータセット、ストックトレーディングの最初の評価、新しいエージェントと検索可能な生成(RAG)の評価、およびテキスト要約、質問応答、株式トレーディングのための3つの新しいオープンソース評価データセットを提供する。
論文 参考訳(メタデータ) (2024-02-20T02:16:16Z) - Data-Centric Financial Large Language Models [27.464319154543173]
大規模言語モデル(LLM)は自然言語のタスクを約束するが、金融のような複雑なドメインに直接適用した場合に苦労する。
我々は、LLMが金融業務をよりうまく扱えるようにするために、データ中心のアプローチを提案する。
論文 参考訳(メタデータ) (2023-10-07T04:53:31Z) - FinGPT: Democratizing Internet-scale Data for Financial Large Language
Models [35.83244096535722]
大型言語モデル (LLM) は、人間に似たテキストの理解と生成に顕著な熟練性を示した。
ファイナンシャル・ジェネレーティブ・プレトレーニング・トランスフォーマー(FinGPT)は、インターネット上の34の多様なソースからリアルタイムの財務データの収集とキュレーションを自動化する。
FinGPTは、FinLLMを民主化し、イノベーションを刺激し、オープンファイナンスにおける新たな機会を開放することを目指している。
論文 参考訳(メタデータ) (2023-07-19T22:43:57Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIUは、命令データ付き微調整LLaMAに基づく最初の金融大規模言語モデル(LLM)を含む包括的なフレームワークである。
我々はLLaMAを細調整してFinMAを提案する。
我々は、FinMAと既存のLLMを詳細に分析し、重要な財政課題に対処する際の長所と短所を明らかにする。
論文 参考訳(メタデータ) (2023-06-08T14:20:29Z) - FinQA: A Dataset of Numerical Reasoning over Financial Data [52.7249610894623]
我々は、大量の財務文書の分析を自動化することを目的として、財務データに関する深い質問に答えることに重点を置いている。
我々は,金融専門家が作成した財務報告に対して質問回答のペアを用いた,新たな大規模データセットFinQAを提案する。
その結果、人気があり、大規模で、事前訓練されたモデルは、金融知識を得るための専門的な人間には程遠いことが示される。
論文 参考訳(メタデータ) (2021-09-01T00:08:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。