Next-Gen Software Engineering. Big Models for AI-Augmented Model-Driven Software Engineering
- URL: http://arxiv.org/abs/2409.18048v2
- Date: Mon, 10 Feb 2025 19:35:49 GMT
- Title: Next-Gen Software Engineering. Big Models for AI-Augmented Model-Driven Software Engineering
- Authors: Ina K. Schieferdecker,
- Abstract summary: The paper provides an overview of the current state of AI-augmented software engineering and develops a corresponding taxonomy, AI4SE.
A vision of AI-assisted Big Models in SE is put forth, with the aim of capitalising on the advantages inherent to both approaches in the context of software development.
- Score: 0.0
- License:
- Abstract: The effectiveness of model-driven software engineering (MDSE) has been successfully demonstrated in the context of complex software; however, it has not been widely adopted due to the requisite efforts associated with model development and maintenance, as well as the specific modelling competencies required for MDSE. Concurrently, artificial intelligence (AI) methods, particularly deep learning methods, have demonstrated considerable abilities when applied to the huge code bases accessible on open-source coding platforms. The so-called big code provides the basis for significant advances in empirical software engineering, as well as in the automation of coding processes and improvements in software quality with the use of AI. The objective of this paper is to facilitate a synthesis between these two significant domains of software engineering (SE), namely models and AI in SE. The paper provides an overview of the current state of AI-augmented software engineering and develops a corresponding taxonomy, AI4SE. In light of the aforementioned considerations, a vision of AI-assisted Big Models in SE is put forth, with the aim of capitalising on the advantages inherent to both approaches in the context of software development. Finally, the new paradigm of pair modelling in MDSE is proposed.
Related papers
- Toward Neurosymbolic Program Comprehension [46.874490406174644]
We advocate for a Neurosymbolic research direction that combines the strengths of existing DL techniques with traditional symbolic methods.
We present preliminary results for our envisioned approach, aimed at establishing the first Neurosymbolic Program framework.
arXiv Detail & Related papers (2025-02-03T20:38:58Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Exploring the intersection of Generative AI and Software Development [0.0]
The synergy between generative AI and Software Engineering emerges as a transformative frontier.
This whitepaper delves into the unexplored realm, elucidating how generative AI techniques can revolutionize software development.
It serves as a guide for stakeholders, urging discussions and experiments in the application of generative AI in Software Engineering.
arXiv Detail & Related papers (2023-12-21T19:23:23Z) - Prompted Software Engineering in the Era of AI Models [1.450405446885067]
This paper introduces prompted software engineering (PSE), which integrates prompt engineering to build effective prompts for language-based AI models.
PSE enables the use of AI models in software development to produce high-quality software with fewer resources, automating tedious tasks and allowing developers to focus on more innovative aspects.
arXiv Detail & Related papers (2023-09-07T20:40:04Z) - Navigating the Complexity of Generative AI Adoption in Software
Engineering [6.190511747986327]
The adoption patterns of Generative Artificial Intelligence (AI) tools within software engineering are investigated.
Influencing factors at the individual, technological, and societal levels are analyzed.
arXiv Detail & Related papers (2023-07-12T11:05:19Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - Data-Driven and SE-assisted AI Model Signal-Awareness Enhancement and
Introspection [61.571331422347875]
We propose a data-driven approach to enhance models' signal-awareness.
We combine the SE concept of code complexity with the AI technique of curriculum learning.
We achieve up to 4.8x improvement in model signal awareness.
arXiv Detail & Related papers (2021-11-10T17:58:18Z) - A Model-Driven Engineering Approach to Machine Learning and Software
Modeling [0.5156484100374059]
Models are used in both the Software Engineering (SE) and the Artificial Intelligence (AI) communities.
The main focus is on the Internet of Things (IoT) and smart Cyber-Physical Systems (CPS) use cases, where both ML and model-driven SE play a key role.
arXiv Detail & Related papers (2021-07-06T15:50:50Z) - AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes [56.65379135797867]
We propose a dynamic algorithm for gaining useful insights about semiconductor manufacturing processes.
We elaborate on the utilization of a Genetic Algorithm and Neural Network to propose an intelligent feature selection algorithm.
arXiv Detail & Related papers (2020-08-29T14:57:53Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
Development of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
Engineering systems follow well-defined processes and testing standards to streamline development for high-quality, reliable results.
We propose a proven systems engineering approach for machine learning development and deployment.
arXiv Detail & Related papers (2020-06-21T17:14:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.